ADX71743

别名: (+/-)-ADX71743; CHEMBL4174742; 6-(2,4-Dimethylphenyl)-2-ethyl-6,7-dihydrobenzo[d]oxazol-4(5H)-one; 6-(2,4-dimethylphenyl)-2-ethyl-4,5,6,7-tetrahydro-1,3-benzoxazol-4-one; 6-(2,4-dimethylphenyl)-2-ethyl-6,7-dihydro-5H-1,3-benzoxazol-4-one; (+)-6-(2,4-Dimethylphenyl)-2-ethyl-6,7-dihydro-4(5H)-benzoxazolone;
目录号: V9195 纯度: ≥98%
ADX71743 是一种选择性、非竞争性、BBB(血脑屏障)可渗透/可穿透的代谢型谷氨酸受体 7 负变构调节剂 (NAM) (mGlu7 NAM)。
ADX71743 CAS号: 1431641-29-0
产品类别: New1
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
5mg
10mg
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
产品描述
ADX71743 是一种选择性、非竞争性、BBB(血脑屏障)可渗透/可穿透的代谢型谷氨酸受体 7 负变构调节剂 (NAM) (mGlu7 NAM)。 ADX71743 具有抗焦虑(抗焦虑)活性。
生物活性&实验参考方法
靶点
mGlu7/metabotropic glutamate receptor 7
体外研究 (In Vitro)
ADX71743 的内部细胞系的 IC50 为 300 nM。当 ADX71743(3 μM;20 分钟)在高频刺激 (HFS) 之前进行预处理时,LTP 诱导几乎完全被阻断 [1]。 ADX71743 (0.1, 10 μM) 促进 L-AP4 诱导的抑制的浓度依赖性逆转,并逆转 L-AP4 引起的突触传递抑制。 10 μM 和 0.1 μM ADX71743 可以分别逆转 10% 和 11% 的 L-AP4 效应 [2]。 ADX71743 的 EC80(IC50 为 22 nM)拮抗谷氨酸,而 L-AP4 的 EC80(IC50 为 125 nM)也具有同样的作用 [2]。
体内研究 (In Vivo)
在较低剂量(50 和 100 毫克/千克)下,ADX71743(50、100 和 150 毫克/千克;SC)可将埋藏大理石的数量显着降低至接近最大值 [2]。在小鼠中,ADX71743(小鼠 12.5、100 mg/kg,大鼠 100 mg/kg;SC)的 Cmax 为 1380、12766 ng/ml(12.5 mg/kg 和 100 mg/kg),T1/2 为 0.68, 0.40 小时 [2]。
酶活实验
在八种代谢型谷氨酸(mGlu)受体亚型中,只有mGlu7在成年动物海马Schaffer侧支(SC)-CA1突触的突触前表达。结合III组mGlu受体激动剂对该突触传递的抑制作用,mGlu7被认为是负责调节SC末端谷氨酸释放的主要自身受体。然而,mGlu7选择性药理学工具的缺乏阻碍了这一假设的直接检验。我们使用了一种新型的选择性mGlu7负变构调节剂(NAM)ADX71743和一种新描述的III组mGlu受体激动剂LSP4-2022,来阐明mGlu7在调节成年C57BL/6J雄性小鼠海马CA1区传递中的作用。有趣的是,尽管mGlu7激动剂抑制SC-CA1 EPSPs,但我们没有发现刺激SC-CA1传入神经激活mGlu7的证据。然而,LSP4-2022也降低了CA1锥体细胞中诱发的单突触IPSC,与对SC-CA1 EPSP的影响相反,ADX71743逆转了SC传入子高频刺激降低IPSC振幅的能力。此外,阻断mGlu7可阻止SC-CA1突触LTP的诱导,mGlu7的激活可增强次最大LTP。总之,这些数据表明,mGlu7在CA1区的抑制性突触中起着异质受体的作用,通过刺激谷氨酸能传入物激活mGlu7的主要作用是去抑制,而不是减少兴奋性传递。此外,这种mGlu7介导的去抑制是SC-CA1突触诱导LTP所必需的,这表明mGlu7可以作为治疗认知障碍的新治疗靶点[1]。
细胞实验
cAMP[2]
如前所述(Chruścicka等人,2015),用重组细胞系进行了均匀时间分辨荧光(HTRF)cAMP动态2测定。简而言之,收集稳定表达mGlu7受体的HEK 293 T-REx细胞,并将其悬浮在Hanks HEPES缓冲液中。将细胞悬浮液加入含有5μM毛喉素(终浓度)的化合物溶液中。在37°C下孵育5分钟后,加入裂解缓冲液中的5μl cAMP-d2缀合物,并通过自动移液系统与10μl细胞悬浮液混合。接下来,加入5μl抗cAMP隐窝结合物,1小时后读取620和665nm处的荧光。结果显示为665nm与620nm的比值乘以104。检测到的信号与样品中cAMP的浓度成反比。ADX71743或MMPIP的拮抗活性以其EC80浓度下L-Glu活性抑制的百分比表示。使用Prism 7.03版分析来自ADX71743或MMPIP的剂量反应数据。每个实验进行三次(n=3),每个数据点一式三份。
动物实验
Animal/Disease Models: Adult male C57Bl6/J mice (24-30 g) and SD (SD (Sprague-Dawley)) rats (250-350 g) [2]
Doses: mice 12.5, 100 mg/kg, rats 100 mg/kg (drug Metabokinetic analysis)
Route of Administration: SC
Experimental Results: T1/2 in mice were 0.68, 0.40 hrs (hrs (hours)), Cmax were 1380, 12766ng/ml, 12.5mg/kg and 100mg/kg. The T1/2 of 100 mg/kg in rats is 1.5 hrs (hrs (hours)) and the Cmax is 16800 ng/ml.
ADX71743 was dissolved in small amount of DMSO and then titrated in 20% captisol [Front Mol Neurosci. 2018 Sep 20;11:316.]
Pharmacokinetic Studies[Front Mol Neurosci. 2018 Sep 20;11:316.]
The method described below was successfully applied to a pharmacokinetic study of ADX71743 and MMPIP in mouse (Albino Swiss) after i.p. injection. Compound ADX71743 and MMPIP were administered to mice at 10 mg/kg i.p. At 0.25, 0.50, 1.0, 2.0, 4.0, 6.0 h, the mice were anesthetized, and the blood was collected from the portal vein to the tubes containing 5% EDTA. The mice were then perfused with 0.1M PBS to remove remaining blood from the body, and the brains were taken out for the analysis. Blood was centrifuged at 2000 rpm for 10 min at 4°C, and the plasma was collected and frozen at -80°C for further analysis. [2]
Plasma and tissue samples from all drug-treated animals were thawed at room temperature prior to use. Standard protocol of sample preparation: 200 μl acetonitrile was added to the eppendorfs with 50 μl of studied plasma samples or tissue homogenate. Samples were mixed for 5 min on a mixer at 25°C and 1400 rpm. Tubes were then centrifuged at 2000 × g for 15 min at 4°C. About 180 μl of each supernatant was transferred into a plate well. Finally, each sample was injected into the column.
MK-801-Induced Hyperactivity[Front Mol Neurosci. 2018 Sep 20;11:316.]
The locomotor activity was recorded individually for each animal in OPTO-M3 locomotor activity cages linked online to a compatible PC activity, as described previously by Woźniak et al., 2016b. Each cage (13 cm × 23 cm × 15 cm) was surrounded with an array of photocell beams. Interruptions of these photobeams resulted in horizontal activity defined as ambulation counts. The mice were placed in the locomotor activity cages for acclimatization for 30 min Then, MMPIP (10, 15 mg/kg) or ADX71743 (5, 10 mg/kg) were administered i.p. Both drugs were given 30 min prior to MK-801 injection (0.35 mg/kg, i.p.). The locomotor activity was measured for 60 min immediately after MK-801 administration.
药代性质 (ADME/PK)
The pharmacokinetic analysis of ADX71743 in mice and rats revealed that it is bioavailable after s.c. administration and is brain penetrant (cerebrospinal fluid concentration/total plasma concentration ratio at C(max) = 5.3%). [2]
The concentration of ADX71743 and MMPIP in mouse plasma and brain are shown in Table ​Table11. Cmax was evident in brain and plasma 0.25 h after injection of ADX71743, and 0.5 h after MMPIP administration. Figure ​Figure33 represents comparison between ADX71743 and MMPIP concentrations in the brain in selected time points after administration.[Front Mol Neurosci. 2018 Sep 20;11:316.]
Data presented in Table ​Table22 showed that ADX71743 and MMPIP had different cytochrome P450 inhibition profile. Weak inhibition (IC50 > 10μM) of cytochrome P450 was observed in case of 1A2, 2B6, 2C9, 2D6 isoforms for both NAM mGluR7 standards. Mild inhibition (3.3 < IC50 < 10) of isoform 2C19 was determined for ADX71743 standard, while strong inhibition (IC50 < 1.1) was observed only for MMPIP in case of isoform 3A4 as well as 2C19.[Front Mol Neurosci. 2018 Sep 20;11:316.]
参考文献

[1]. Activation of Metabotropic Glutamate Receptor 7 Is Required for Induction of Long-Term Potentiation at SC-CA1 Synapses in the Hippocampus. J Neurosci. 2015 May 13;35(19):7600-15.

[2]. ADX71743, a Potent and Selective Negative Allosteric Modulator of Metabotropic Glutamate Receptor 7: In Vitro and in Vivo Characterization. Pharmacol Exp Ther. 2013 Mar;344(3):624-36.

其他信息
Metabotropic glutamate receptor 7 (mGlu(7)) has been suggested to be a promising novel target for treatment of a range of disorders, including anxiety, post-traumatic stress disorder, depression, drug abuse, and schizophrenia. Here we characterized a potent and selective mGlu(7) negative allosteric modulator (NAM) (+)-6-(2,4-dimethylphenyl)-2-ethyl-6,7-dihydrobenzo[d]oxazol-4(5H)-one (ADX71743). In vitro, Schild plot analysis and reversibility tests at the target confirmed the NAM properties of the compound and attenuation of L-(+)-2-amino-4-phosphonobutyric acid-induced synaptic depression confirmed activity at the native receptor. The pharmacokinetic analysis of ADX71743 in mice and rats revealed that it is bioavailable after s.c. administration and is brain penetrant (cerebrospinal fluid concentration/total plasma concentration ratio at C(max) = 5.3%). In vivo, ADX71743 (50, 100, 150 mg/kg, s.c.) caused no impairment of locomotor activity in rats and mice or activity on rotarod in mice. ADX71743 had an anxiolytic-like profile in the marble burying and elevated plus maze tests, dose-dependently reducing the number of buried marbles and increasing open arm exploration, respectively. Whereas ADX71743 caused a small reduction in amphetamine-induced hyperactivity in mice, it was inactive in the mouse 2,5-dimethoxy-4-iodoamphetamine-induced head twitch and the rat conditioned avoidance response tests. In addition, the compound was inactive in the mouse forced swim test. These data suggest that ADX71743 is a suitable compound to help unravel the physiologic role of mGlu(7) and to better understand its implication in central nervous system diseases. Our in vivo tests using ADX71743, reported here, suggest that pharmacological inhibition of mGlu(7) is a valid approach for developing novel pharmacotherapies to treat anxiety disorders, but may not be suitable for treatment of depression or psychosis.[2]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C17H19NO2
分子量
269.338264703751
精确质量
269.141578
元素分析
C, 75.81; H, 7.11; N, 5.20; O, 11.88
CAS号
1431641-29-0
PubChem CID
53391766
外观&性状
White to off-white solid powder
LogP
3.8
tPSA
43.1Ų
氢键供体(HBD)数目
0
氢键受体(HBA)数目
3
可旋转键数目(RBC)
2
重原子数目
20
分子复杂度/Complexity
370
定义原子立体中心数目
0
SMILES
O1C(CC)=NC2C(CC(C3C=CC(C)=CC=3C)CC1=2)=O
InChi Key
CPKZCQHJDFSOJT-UHFFFAOYSA-N
InChi Code
InChI=1S/C17H19NO2/c1-4-16-18-17-14(19)8-12(9-15(17)20-16)13-6-5-10(2)7-11(13)3/h5-7,12H,4,8-9H2,1-3H3
化学名
6-(2,4-dimethylphenyl)-2-ethyl-6,7-dihydro-5H-1,3-benzoxazol-4-one
别名
(+/-)-ADX71743; CHEMBL4174742; 6-(2,4-Dimethylphenyl)-2-ethyl-6,7-dihydrobenzo[d]oxazol-4(5H)-one; 6-(2,4-dimethylphenyl)-2-ethyl-4,5,6,7-tetrahydro-1,3-benzoxazol-4-one; 6-(2,4-dimethylphenyl)-2-ethyl-6,7-dihydro-5H-1,3-benzoxazol-4-one; (+)-6-(2,4-Dimethylphenyl)-2-ethyl-6,7-dihydro-4(5H)-benzoxazolone;
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
溶解度 (体内实验)
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。

注射用配方
(IP/IV/IM/SC等)
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO 50 μL Tween 80 850 μL Saline)
*生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。
注射用配方 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO 400 μL PEG300 50 μL Tween 80 450 μL Saline)
注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO 900 μL Corn oil)
示例: 注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。
View More

注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO 900 μL (20% SBE-β-CD in Saline)]
*20% SBE-β-CD in Saline的制备(4°C,储存1周):将2g SBE-β-CD (磺丁基-β-环糊精) 溶解于10mL生理盐水中,得到澄清溶液。
注射用配方 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (如: 500 μL 2-Hydroxypropyl-β-cyclodextrin (羟丙基环胡精) 500 μL Saline)
注射用配方 6: DMSO : PEG300 : Castor oil : Saline = 5 : 10 : 20 : 65 (如: 50 μL DMSO 100 μL PEG300 200 μL Castor oil 650 μL Saline)
注射用配方 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (如: 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
注射用配方 8: 溶解于Cremophor/Ethanol (50 : 50), 然后用生理盐水稀释。
注射用配方 9: EtOH : Corn oil = 10 : 90 (如: 100 μL EtOH 900 μL Corn oil)
注射用配方 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL EtOH 400 μL PEG300 50 μL Tween 80 450 μL Saline)


口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠)
口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素)
示例: 口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。
View More

口服配方 3: 溶解于 PEG400 (聚乙二醇400)
口服配方 4: 悬浮于0.2% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 5: 溶解于0.25% Tween 80 and 0.5% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 6: 做成粉末与食物混合


注意: 以上为较为常见方法,仅供参考, InvivoChem并未独立验证这些配方的准确性。具体溶剂的选择首先应参照文献已报道溶解方法、配方或剂型,对于某些尚未有文献报道溶解方法的化合物,需通过前期实验来确定(建议先取少量样品进行尝试),包括产品的溶解情况、梯度设置、动物的耐受性等。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 3.7128 mL 18.5639 mL 37.1278 mL
5 mM 0.7426 mL 3.7128 mL 7.4256 mL
10 mM 0.3713 mL 1.8564 mL 3.7128 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

生物数据图片
  • mGlu7 does not act as an autoreceptor at SC-CA1 synapses. fEPSPs were recorded at SC-CA1 synapses after stimulation of axon fibers originating in CA3 with a bipolar electrode. ADX71743 or LSP4-2022 was bath applied. A, Application of 30 μm LSP4-2022 results in a depression of the fEPSP slope. Pretreatment with 3 μm ADX71743 for 5 min before coapplication of 3 μm ADX71743 and 30 μm LSP4-2022 prevented the effects of LSP4-2022 alone. Data are normalized to the averaged baseline fEPSP slope. Black lines indicate drug addition. B, Quantification of normalized fEPSP slopes during LSP4-2022 alone and coapplication of both LSP4-2022 and ADX71743. Values represent mean ± SEM. ***p = 0.004 (two-tailed Student's t test). n = 4 slices; df = 6. C, fEPSPs were recorded at SC-CA1 synapses in the presence of 20 μm bicuculline after stimulation of axon fibers from CA3 with a bipolar electrode. ADX71743 or DMSO vehicle was bath applied. Sample traces from an individual, representative experiment. Five fEPSPs were generated by applying 5 stimulations at 10 Hz. Black traces represent the fEPSPs stimulated during DMSO vehicle conditions. Red traces represent the fEPSPs stimulated during addition of 3 μm ADX71743. Calibration: 1 mV, 4 ms. D, Application of 3 μm ADX71743 did not significantly alter the slope of any of the fEPSPs in the train. Values represent mean ± SEM. p = 0.318 (two-way ANOVA). n = 5 slices; df = 1, 30. E, Sample traces from an individual, representative experiment. A stimulation paradigm was used in which an initial stimulation was applied. At 550 ms later, a burst of 10 stimulations delivered at 100 Hz was given, followed 550 ms later by a second single stimulation. Black traces represent the fEPSPs resulting during DMSO vehicle conditions. Red traces represent the fEPSPs during addition of 3 μm ADX71743. Calibration: 1 mV, 4 ms. F, Application of 3 μm ADX71743 did not significantly alter the calculated ratio between the two fEPSPs. Values represent mean ± SEM. p = 0.093 (two-tailed Student's t test). n = 5 slices; df = 4.[1].Rebecca Klar, et al. Activation of Metabotropic Glutamate Receptor 7 Is Required for Induction of Long-Term Potentiation at SC-CA1 Synapses in the Hippocampus. J Neurosci. 2015 May 13;35(19):7600-15.
  • mGlu7 reduces GABA release in a frequency-dependent manner. A, Sample traces from an individual, representative experiment. Application of 3 μm ADX71743 (red line) has no effect on any of the IPSC amplitudes in the train. Calibration: 200 pA, 200 ms. B, Normalized amplitude of each IPSC represented as percentage of the baseline first IPSC amplitude with or without 3 μm ADX71743 (p = 0.299, two-way ANOVA). n = 5; df = 1, 32. C, Schematic of stimulation paradigm. An initial stimulation was applied 550 ms before 10 stimulations at 100 Hz. At 550 ms later, a second test stimulation was applied. D, Sample traces from an individual, representative experiment with ADX71743. First IPSC represents stimulation 1 from schematic, and second IPSC represents stimulation 2. During vehicle conditions, there is a reduction in the second IPSC amplitude. Application of 3 μm ADX71743 results in an increase in the second IPSC amplitude after the 100 Hz stimulation. Calibration: 100 pA, 20 ms. E, Application of 3 μm ADX71743 results in a significant increase in the ratio of the two IPSCs. **p = 0.0021 (two-tailed paired t test). n = 7; df = 6. F, A train of 5 IPSCs was evoked by stimulating CA3 axon fibers with a bipolar electrode at a frequency of 5 Hz. Sample traces from an individual, representative experiment. Application of 100 μm LY341495 (red line) had no effect on any of the IPSC amplitudes in the train. Calibration: 200 pA, 200 ms. G, Normalized amplitude of each IPSC represented as percentage of the baseline first IPSC amplitude with or without 100 μm LY341495 (p = 0.504, two-way ANOVA). n = 3 cells; df = 1, 20. H, Sample traces from an individual, representative experiment with LY341495. Application of 100 μm LY341495 resulted in an increase in the second IPSC after the 100 Hz stimulation. Calibration: 100 pA, 10 ms. I, Application of 100 μm LY341495 resulted in a significant increase in the ratio of the two IPSCs. The ratio was calculated as the amplitude of stimulation 2 IPSC divided by the amplitude of stimulation 1 IPSC. ***p = 0.0001 (two-tailed paired t test). n = 6; df = 5.[1].Rebecca Klar, et al. Activation of Metabotropic Glutamate Receptor 7 Is Required for Induction of Long-Term Potentiation at SC-CA1 Synapses in the Hippocampus. J Neurosci. 2015 May 13;35(19):7600-15.
联系我们