Daunorubicin

别名: Daunomycin HCl; RP 13057; Rubidomycin; RP-13057; RP13057; Daunomycin hydrochloride; daunomycin HCl; daunorubidomycine; US brand names: Cerubidine; Rubidomycin; Foreign brand names: Cerubidin; Daunoblastin; Daunoblastina; Ondena; Rubilem; Abbreviations: DNM; DNR; DRB; Code names: FI6339; RP13057
目录号: V4896 纯度: ≥98%
柔红霉素(也称为道诺霉素;RP 13057;红比霉素)是一种蒽环类类似物和拓扑异构酶 II 抑制剂,主要用作抗生素。
Daunorubicin CAS号: 20830-81-3
产品类别: Topoisomerase
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
25mg
50mg
100mg
250mg
500mg
1g
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
柔红霉素(也称为柔红霉素;RP 13057;红比霉素)是一种蒽环类类似物和拓扑异构酶 II 抑制剂,主要用作抗生素。它还用作针对肿瘤特别是急性髓性白血病和急性淋巴细胞白血病的有效化疗剂。在体外测定中,daunorubicin 抑制胸苷和尿苷掺入 L1210 细胞。它还抑制标记前体掺入从孵育细胞中分离的 DNA 和 RNA 中。
生物活性&实验参考方法
靶点
Topoisomerase II; Daunorubicins/Doxorubicins
体外研究 (In Vitro)
体外活性:在反映柔红霉素给药后血浆峰值浓度的药物浓度下,主要机制可能是通过与拓扑异构酶 II 相互作用,这可能是通过信号通路导致生长停滞和/或细胞杀伤的主要触发事件至少在白血病细胞和胸腺细胞中。醌结构允许柔红霉素在氧化还原酶(包括细胞色素 P450 还原酶、NADH 脱氢酶和黄嘌呤氧化酶)介导的反应中充当电子受体。当柔红霉素浓度超过约 2-4 μM 时,自由基介导的毒性和 DNA 交联可能会变得明显。 Daunorubicin 在 0.2 至 2 μM 的浓度范围内抑制 HeLa 细胞中的 DNA 和 RNA 合成。 Daunorubicin 在 4 μM 浓度范围内抑制艾利希腹水肿瘤细胞中的两种 DNA 合成。 Daunorubic 在 HL-60 或 U-937 人白血病细胞中在 0.5 和 1 μM 浓度下触发细胞凋亡。 Daunorubicin 通过激活神经酰胺合酶进行从头合成,从而刺激 P388 和 U937 细胞中的神经酰胺升高和细胞凋亡。 Daunorubicin 剂量依赖性地增加人脐静脉内皮细胞的磷脂酰丝氨酸暴露和随后的促凝血活性。 Daunorubicin (0.2 mM) 显着增强内皮微粒的释放,这些微粒在人脐静脉内皮细胞中具有高度促凝血作用。细胞测定:当用从急性淋巴细胞白血病患者分离的白血病细胞进行治疗时,柔红霉素显着抑制 DNA 和 RNA 大分子的生物合成。
体内研究 (In Vivo)
与对照组相比,盐酸柔红霉素(RP 13057 盐酸盐)(3 mg/kg,静脉注射)组的尿蛋白排泄、血清肌酐和血尿素氮(BUN)水平显着增加。与对照组相比,柔红霉素(DNR)的给药导致肾组织中丙二醛(MDA)水平显着增加。
酶活实验
柔红霉素在0.2至2μM的浓度范围内抑制HeLa细胞中的DNA和RNA合成。
细胞实验
当给予从急性淋巴细胞白血病患者分离的白血病细胞时,柔红霉素显着抑制 DNA 和 RNA 大分子的生物合成。
动物实验
Male Sprague-Dawley rats eight weeks of age are employed. Two more weeks are spent acclimating and keeping the animals in quarantine before the experiments begin. Day 0: A single intravenous injection of Daunorubicin (3 mg/kg) is given to each animal. To achieve an accumulative dose of 9 mg/kg, daunorubicin is given in three equal injections spaced 48 hours apart over the course of one week. It is well known that this dosage will cause nephrotoxicity and cardiotoxicity. As a control, age-matched rats (group Control; n=5) are injected with corresponding volumes of 0.9% NaCl. Twenty-two DNR-treated rats were split into two groups at random and given either a vehicle (group Daunorubicin; n = 12) or Telmisartan (10 mg/kg/day; group Daunorubicin+Telmisartan; n = 10). Telmisartan dosage is determined by referencing an earlier study. Commencing the day of Daunorubicin administration, Telmisartan is administered for an additional 5 weeks after Daunorubicin administration is stopped, for a total of 6 weeks of administration. Previous reports are the basis for choosing this study duration. Body weight (BW) and protein concentrations are measured on day 41 after rats are individually housed in metabolic cages for a 24-hour urine collection period. Following the completion of the six-week study period, kidney tissue is extracted from the rats and used for semi-quantitative immunoblotting and immunohistochemical analyses.
Rats from Sprague-Dawley
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Daunorubicin was found to have a tmax of 2 h and a cmax of 24.8 μg/mL after a 90 min infusion of the liposomal formulation at a dose of 44 mg/m2.
Daunorubicin is eliminated hepatically. 40% of daunorubicin is excreted in the bile while 25% is excreted in an active form (daunorubicin or daunorubicinol) in the urine. In the liposomal formulation, only 9% of active molecules are excreted in the urine.
Daunorubicin has a steady-state volume of distribution of 1.91 L/m2 reported with the liposomal formulation. The average volume of distribution reported for the liposomal formulation is 6.6 L.
Daunorubicin has a clearance of 68.4 mL/h/m2 determined using the liposomal formulation.
Note: Liposomal encapsulation can substantially affect a drug's functional properties relative to those of the unencapsulated drug. In addition, different liposomal drug products may vary from one another in the chemical composition and physical form of the liposomes. Such differences can substantially affect the functional properties of liposomal drug products.
Encapsulation of daunorubicin citrate in liposomes substantially alters the pharmacokinetics of the drug relative to conventional iv formulations (ie, nonencapsulated drug) with resultant decreased distribution into the peripheral compartment, increased distribution into Kaposi's lesions, and decreased plasma clearance
Daunorubicin hydrochloride is extremely irritating to tissues and, therefore, must be administered iv. Following iv infusion of a single 40-mg/sq m dose of liposomal daunorubicin citrate as a liposomal injection in patients with AIDS-related Kaposi's sarcoma, mean peak plasma daunorubicin (mostly bound to liposomes) concentrations are approximately 18 mug/mL following a 30-60 minute infusion. Peak plasma concentrations of daunorubicin are higher following iv administration of liposomal daunorubicin citrate than those attained following iv administration of conventional (nonencapsulated) daunorubicin hydrochloride.
In one study in patients with disseminated malignancies receiving a single 80-mg/sq m iv dose of nonencapsulated daunorubicin, peak plasma concentrations of the drug were 0.4 ug/mL while in patients with solid tumors (including those with Kaposi's sarcoma) who received a single 80-mg/sq m iv dose of liposomal daunorubicin, peak plasma concentrations of daunorubicin were about 44 ug/mL (about 100-fold greater than those receiving a comparable dose of the nonencapsulated drug); area under the plasma concentration-time curve (AUC) was about 36-fold greater than that observed with conventional daunorubicin hydrochloride. Following iv administration of liposomal daunorubicin, peak plasma concentrations and AUCs of daunorubicin generally increase linearly with increasing doses (at doses of 10-80 ug/mL).
For more Absorption, Distribution and Excretion (Complete) data for DAUNORUBICIN (18 total), please visit the HSDB record page.
Metabolism / Metabolites
Daunorubicin hydrochloride is extensively metabolized in the liver and other tissues, mainly by cytoplasmic aldo-keto reductases, producing daunorubicinol, the major metabolite which has antineoplastic activity. Approximately 40% of the drug in the plasma is present as daunorubicinol within 30 minutes and 60% in 4 hours after a dose of nonencapsulated daunorubicin.
Daunorubicinol has been detected only in low concentrations in the plasma following iv administration of daunorubicin citrate liposomal injection. In patients with AIDS-associated Kaposi's sarcoma receiving iv administration of liposomal daunorubicin doses of 40 mg/sq m, the AUC of daunorubicinol represented only 2% of the total daunorubicin AUC. Additional metabolism by reductive cleavage of the glycosidic bond produces aglycones, which have little or no cytotoxic activity and are demethylated and conjugated with sulfate and glucuronide by microsomal enzymes.
Metabolites identified in human urine are daunorubicinol, daunorubicinol aglycone, desmethyldeoxydaunorubicinol aglycone, desmethyldeoxyrubicinol aglycone-4-o-sulfate, desmethyloxydaunorubicinol aglycone-4-o-glucuronide, and deoxydaunorubicinol aglycone glucuronide.
Extensively metabolized, initially to active alcohol metabolites; further metabolized by liver microsomes to inactive aglycones and demethylated glucuronide and sulfate conjugates.
Hepatic
Route of Elimination: Twenty-five percent of an administered dose of daunorubicin hydrochloride is eliminated in an active form by urinary excretion and an estimated 40% by biliary excretion.
Half Life: 18.5 hours
Biological Half-Life
Daunorubicin has been determined to have a terminal half-life of 18.5 h (+/- 4.9). Daunorubicinol, the primary active metabolite has been determined to have a terminal half-life of 26.7 h (+/- 12.8). The mean half-life of elimination of liposomal daunorubicin has been reported to be 22.1 h in pharmacokinetic studies and 31.5 h in official FDA labeling.
Following rapid iv administration of conventional daunorubicin hydrochloride injection, total plasma concentrations of daunorubicin and its metabolites decline in a triphasic manner, and plasma concentrations of unchanged daunorubicin decline in a biphasic manner.
The plasma half-life of nonencapsulated daunorubicin averages 45 minutes in the initial phase and 18.5 hours in the terminal phase. By 1 hour after administration of nonencapsulated daunorubicin, the predominant form of the drug in plasma is the active metabolite daunorubicinol, which has an average terminal plasma half-life of 26.7 hours.
The apparent elimination half-life of DaunoXome (daunorubicin citrate liposome injection) is 4.4 hours, far shorter than that of daunorubicin, and probably represents a distribution half-life.
毒性/毒理 (Toxicokinetics/TK)
Hepatotoxicity
Chemotherapy with daunorubicin in combination with other agents is associated with serum enzyme elevations in a proportion of patients depending upon the dose and other agents used. ALT elevations during daunorubicin therapy are usually asymptomatic and transient and may resolve without dose modification. In many instances, it is difficult to attribute the liver test abnormalities to daunorubicin, because of the exposure to other potentially hepatotoxic agents. There have been no convincing instances of acute, clinically apparent idiosyncratic liver injury with jaundice associated with daunorubicin therapy. However, high doses of daunorubicin given in combination with other antineoplastic agents have been linked to cases of sinusoidal obstruction syndrome, typically presenting with right upper quadrant pain 10 to 30 days after the infusion, followed by weight gain, ascites and liver test abnormalities. Fatalities due to hepatic failure have occurred, but most patients recover within 1 to 3 months of onset.
Likelihood score: E* (unproven but suspected cause of clinically apparent liver injury).
参考文献

[1]. Activity of topoisomerase inhibitors daunorubicin, idarubicin, and aclarubicin in the Drosophila Somatic Mutation and Recombination Test. Environ Mol Mutagen. 2004;43(4):250-7.

[2]. Inhibition of DNA and RNA synthesis by daunorubicin in sensitive and resistant Ehrlich ascites tumor cells in vitro. Cancer Res. 1972 Jun;32(6):1307-14.

[3]. Melanin inhibits cytotoxic effects of Doxorubicin and Daunorubicin in MOLT 4 cells. Pigment Cell Res. 2003 Aug;16(4):351-4.

[4]. An effective in vitro antitumor response against human pancreatic carcinoma with paclitaxel and Daunorubicin by induction of both necrosis and apoptosis. Anticancer Res. 2004 Sep-Oct;24(5A):2617-26.

[5]. Telmisartan prevents the progression of renal injury in daunorubicin rats with the alteration of angiotensin II and endothelin-1 receptor expression associated with its PPAR-γ agonist actions. Toxicology. 2011 Jan 11;279(1-3):91-9.

[6]. MiR-15a-5p Confers Chemoresistance in Acute Myeloid Leukemia by Inhibiting Autophagy Induced by Daunorubicin. Int J Mol Sci. 2021 May 13;22(10):5153.

[7]. Doxorubicin suppresses chondrocyte differentiation by stimulating ROS production. Eur J Pharm Sci. 2021 Dec 1;167:106013.

其他信息
Daunomycin can cause cancer according to an independent committee of scientific and health experts.
Anthracycline antibiotic. An anticancer agent.
Daunorubicin is a natural product found in Actinomadura roseola. It has a role as an antineoplastic agent and a bacterial metabolite. It is an anthracycline, a member of tetracenequinones, a member of p-quinones and an aminoglycoside antibiotic. It is a conjugate base of a daunorubicin(1+). It derives from a hydride of a tetracene.
A very toxic anthracycline aminoglycoside antineoplastic isolated from Streptomyces peucetius and others, used in treatment of leukemia and other neoplasms.
Daunorubicin is an Anthracycline Topoisomerase Inhibitor. The mechanism of action of daunorubicin is as a Topoisomerase Inhibitor.
Daunorubicin is an anthracycline antibiotic that has antineoplastic activity and is used in the therapy of acute leukemia and AIDS related Kaposi sarcoma. Daunorubicin is associated with a low rate of transient serum enzyme and bilirubin elevations during therapy, but has not been implicated in cases of clinically apparent acute liver injury with jaundice.
Daunorubicin has been reported in Streptomyces, Brassica napus, and other organisms with data available.
Daunorubicin is an anthracycline antineoplastic antibiotic with therapeutic effects similar to those of doxorubicin. Daunorubicin exhibits cytotoxic activity through topoisomerase-mediated interaction with DNA, thereby inhibiting DNA replication and repair and RNA and protein synthesis.
Daunorubicin is only found in individuals that have used or taken this drug. It is a very toxic anthracycline aminoglycoside antineoplastic isolated from Streptomyces peucetius and others, used in treatment of leukemia and other neoplasms. [PubChem]Daunorubicin has antimitotic and cytotoxic activity through a number of proposed mechanisms of action: Daunorubicin forms complexes with DNA by intercalation between base pairs, and it inhibits topoisomerase II activity by stabilizing the DNA-topoisomerase II complex, preventing the religation portion of the ligation-religation reaction that topoisomerase II catalyzes.
A very toxic anthracycline aminoglycoside antineoplastic isolated from Streptomyces peucetius and others, used in treatment of LEUKEMIA and other NEOPLASMS.
See also: Daunorubicin Hydrochloride (annotation moved to).
Drug Indication
For remission induction in acute nonlymphocytic leukemia (myelogenous, monocytic, erythroid) of adults and for remission induction in acute lymphocytic leukemia of children and adults. Daunorubicin is indicated in combination with [cytarabine] for the treatment of newly-diagnosed therapy-related acute myeloid leukemia (t-AML) or AML with myelodysplasia-related changes (AML-MRC) in adults and pediatric patients 1 year and older.
Mechanism of Action
Daunorubicin has antimitotic and cytotoxic activity through a number of proposed mechanisms of action: Daunorubicin forms complexes with DNA by intercalation between base pairs, and it inhibits topoisomerase II activity by stabilizing the DNA-topoisomerase II complex, preventing the religation portion of the ligation-religation reaction that topoisomerase II catalyzes.
Daunorubicin is an antineoplastic antibiotic. Daunorubicin has antimitotic and cytotoxic activity. Daunorubicin forms a complex with DNA by intercalation between base pairs. By stabilizing the complex between DNA and topoisomerase II, daunorubicin inhibits the activity of this enzyme, resulting in single-strand and double-strand breaks in DNA. Daunorubicin also may inhibit polymerase activity, affect regulation of gene expression, and be involved in free radical damage to DNA. Although daunorubicin is maximally cytotoxic in the S phase, the drug is not cycle-phase specific. Daunorubicin also has antibacterial and immunosuppressive properties.
Anthracyclines are an important reagent in many chemotherapy regimes for treating a wide range of tumors. One of the primary mechanisms of anthracycline action involves DNA damage caused by inhibition of topoisomerase II. Enzymatic detoxification of anthracycline is a major critical factor that determines anthracycline resistance. Natural product, daunorubicin a toxic analogue of anthracycline is reduced to less toxic daunorubicinol by the AKR1B10, enzyme, which is overexpressed in most cases of smoking associate squamous cell carcinoma (SCC) and adenocarcinoma. In addition, AKR1B10 was discovered as an enzyme overexpressed in human liver, cervical and endometrial cancer cases in samples from uterine cancer patients. Also, the expression of AKR1B10 was associated with tumor recurrence after surgery and keratinization of squamous cell carcinoma in cervical cancer and estimated to have the potential as a tumor intervention target colorectal cancer cells (HCT-8) and diagnostic marker for non-small-cell lung cancer. This article presents the mechanism of daunorubicin action and a method to improve the effectiveness of daunorubicin by modulating the activity of AKR1B10.
... In the present study using the ATP depleting agents cyanide, azide, or dinitrophenol to inhibit energy dependent transport processes, /investigators/ observed even larger increases in daunorubicin accumulation than were seen with CsA. Similar patterns were seen in a wide range of P-gp negative human cancer cell lines. Also the observed cyanide effect did not correlate with the expression of mRNA for multidrug resistance-associated protein (MRP), the only other member of the ABC family of membrane transporters that is known to be capable of effluxing daunorubicin. Thse results suggest that daunorubicin accumulation in many cases of AML is modulated by one or more novel energy-dependent processes that are distinct from P-gp or MRP. /The authors/ speculate that this novel drug transport mechanism(s) may influence the response of AML patients to daunorubicin and other therapeutic agents.
Inhibits DNA synthesis and blocks DNA-directed RNA polymerase. It can prevent cell division in doses that do not interfere with nucleic acid synthesis.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C27H29NO10
分子量
527.53
精确质量
527.179
元素分析
C, 61.48; H, 5.54; N, 2.66; O, 30.33
CAS号
20830-81-3
相关CAS号
20830-81-3; 23541-50-6 (HCl); 371770-68-2 (citrate)
PubChem CID
30323
外观&性状
Dark Red Solid powder
密度
1.6±0.1 g/cm3
沸点
770.0±60.0 °C at 760 mmHg
熔点
155ºC
闪点
419.5±32.9 °C
蒸汽压
0.0±2.8 mmHg at 25°C
折射率
1.692
LogP
2.92
tPSA
185.84
氢键供体(HBD)数目
5
氢键受体(HBA)数目
11
可旋转键数目(RBC)
4
重原子数目
38
分子复杂度/Complexity
960
定义原子立体中心数目
6
SMILES
O=C(C(C(OC)=CC=C1)=C1C2=O)C3=C2C(O)=C(C[C@@](O)(C(C)=O)C[C@@H]4O[C@@]5([H])C[C@H](N)[C@H](O)[C@H](C)O5)C4=C3O
InChi Key
STQGQHZAVUOBTE-VGBVRHCVSA-N
InChi Code
InChI=1S/C27H29NO10/c1-10-22(30)14(28)7-17(37-10)38-16-9-27(35,11(2)29)8-13-19(16)26(34)21-20(24(13)32)23(31)12-5-4-6-15(36-3)18(12)25(21)33/h4-6,10,14,16-17,22,30,32,34-35H,7-9,28H2,1-3H3/t10-,14-,16-,17-,22+,27-/m0/s1
化学名
(7S,9S)-9-acetyl-7-[(2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-4-methoxy-8,10-dihydro-7H-tetracene-5,12-dione
别名
Daunomycin HCl; RP 13057; Rubidomycin; RP-13057; RP13057; Daunomycin hydrochloride; daunomycin HCl; daunorubidomycine; US brand names: Cerubidine; Rubidomycin; Foreign brand names: Cerubidin; Daunoblastin; Daunoblastina; Ondena; Rubilem; Abbreviations: DNM; DNR; DRB; Code names: FI6339; RP13057
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: ~10 mM
Water: N/A
Ethanol: <1 mg/mL
溶解度 (体内实验)
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。

注射用配方
(IP/IV/IM/SC等)
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO 50 μL Tween 80 850 μL Saline)
*生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。
注射用配方 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO 400 μL PEG300 50 μL Tween 80 450 μL Saline)
注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO 900 μL Corn oil)
示例: 注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。
View More

注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO 900 μL (20% SBE-β-CD in Saline)]
*20% SBE-β-CD in Saline的制备(4°C,储存1周):将2g SBE-β-CD (磺丁基-β-环糊精) 溶解于10mL生理盐水中,得到澄清溶液。
注射用配方 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (如: 500 μL 2-Hydroxypropyl-β-cyclodextrin (羟丙基环胡精) 500 μL Saline)
注射用配方 6: DMSO : PEG300 : Castor oil : Saline = 5 : 10 : 20 : 65 (如: 50 μL DMSO 100 μL PEG300 200 μL Castor oil 650 μL Saline)
注射用配方 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (如: 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
注射用配方 8: 溶解于Cremophor/Ethanol (50 : 50), 然后用生理盐水稀释。
注射用配方 9: EtOH : Corn oil = 10 : 90 (如: 100 μL EtOH 900 μL Corn oil)
注射用配方 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL EtOH 400 μL PEG300 50 μL Tween 80 450 μL Saline)


口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠)
口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素)
示例: 口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。
View More

口服配方 3: 溶解于 PEG400 (聚乙二醇400)
口服配方 4: 悬浮于0.2% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 5: 溶解于0.25% Tween 80 and 0.5% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 6: 做成粉末与食物混合


注意: 以上为较为常见方法,仅供参考, InvivoChem并未独立验证这些配方的准确性。具体溶剂的选择首先应参照文献已报道溶解方法、配方或剂型,对于某些尚未有文献报道溶解方法的化合物,需通过前期实验来确定(建议先取少量样品进行尝试),包括产品的溶解情况、梯度设置、动物的耐受性等。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 1.8956 mL 9.4781 mL 18.9563 mL
5 mM 0.3791 mL 1.8956 mL 3.7913 mL
10 mM 0.1896 mL 0.9478 mL 1.8956 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT02085408 Active
Recruiting
Drug: Daunorubicin
Drug: Cytarabine
Adult Acute Monocytic Leukemia
(M5b)
Adult Erythroleukemia
(M6a)
ECOG-ACRIN Cancer Research Group February 4, 2011 Phase 3
NCT05939180 Active
Recruiting
Drug: Venetoclax Oral Tablet
Drug: Daunorubicin
Acute Myeloid Leukemia The First Affiliated Hospital
of Soochow University
July 1, 2023 Phase 2
Phase 3
NCT02013648 Active
Recruiting
Drug: Daunorubicin
Drug: Idarubicin
Acute Myeloid Leukemia
(AML)
University of Ulm July 2014 Phase 3
NCT03709758 Recruiting Drug: Daunorubicin
Drug: Cytarabine
Acute Myeloid Leukemia Dana-Farber Cancer Institute October 17, 2018 Phase 1
NCT05832320 Recruiting Drug: Etoposide
Drug: Daunorubicin
Oral
Acute Promyelocytic Leukemia
Induction Therapy
Peking University People's
Hospital
January 1, 2023 Not Applicable
生物数据图片
  • Treatment with daunorubicin increases autophagy in K562 cells. Int J Mol Sci . 2021 May 13;22(10):5153.
  • miR-15a-5p inhibits autophagy induced by daunorubicin. Int J Mol Sci . 2021 May 13;22(10):5153.
相关产品
联系我们