Ketorolac (RS37619)

别名: RS-37619; Ketorolac, Toradol, Acular,RS 37619;RS37619; Sprix, Macril, Acuvail, Lixidol
酮咯酸;(+/-)-5-苯甲酰基-2,3-二氢-1H-吡咯并吡咯烷-1-甲酸;酮咯酸-D5
目录号: V1050 纯度: ≥98%
Ketorolac(Toradol, Aulous,RS 37619;RS37619; Sprix, Macril, Acuvail, Lixidol) 是一种 NSAID(非甾体类抗炎药),是一种有效的非选择性 COX-1 和 COX-2 抑制剂,具有潜在的抗炎活性。
Ketorolac (RS37619) CAS号: 74103-06-3
产品类别: COX
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
25mg
25mg
50mg
50mg
100mg
100mg
250mg
500mg
1g
2g
5g
10g
Other Sizes

Other Forms of Ketorolac (RS37619):

  • 酮咯酸氨丁三醇
  • (S)-酮咯酸
  • (R)-酮咯酸
  • 酮咯酸-D5
  • 酮咯酸钙
  • Ketorolac-d4 (Ketorolac-d4)
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
Ketorolac(Toradol、Aulous、RS 37619;RS37619;Sprix、Macril、Acuvail、Lixidol)是一种 NSAID(非甾体抗炎药),是 COX-1 和 COX- 的有效非选择性 COX 抑制剂。 2 具有潜在的抗炎活性。它抑制 COX-1/2,IC50 分别为 1.23 μM 和 3.50 μM。酮咯酸的 (S) 对映体对大鼠 COX-1 的 IC50 为 0.10 μM,其效力大约是外消旋体的两倍,而 IC50 > 100 μM 的 (R)-对映体实际上没有活性。 Ketorolac 可抑制 HEL 细胞 (COX-1) 和 LPS 刺激的 Mono Mac 6 细胞 (COX-2) 中类二十烷酸的形成,IC50 分别为 0.025 μM 和 0.039 μM。
生物活性&实验参考方法
体外研究 (In Vitro)
酮咯酸 (RS37619) 盐(0-30 μM;48 小时)可成功杀死口腔癌细胞[4]。在 H357 细胞中,酮咯酸盐(0–5 μM;48 小时)会导致细胞凋亡并抑制 DDX3 蛋白的产生[4]。酮咯酸盐(0-2.5 μM;0-16 小时)可抑制口腔癌细胞生长[4]。通过直接与 DDX3 相互作用,酮咯酸盐 (0–50 μM) 抑制 ATP 酶活性[4]。
体内研究 (In Vivo)
在兔子中,酮咯酸 (RS37619) 或 0.4% 酮咯酸氨丁三醇滴眼液对眼睛表现出有效的抗炎作用[1]。酮咯酸(4 mg/kg/天,口服;2 周)不会对大鼠牙槽窝骨小梁体积分数产生负面影响[2]。在大鼠中,鞘内注射酮咯酸(60 μg)可减轻脊髓缺血引起的损伤[3]。暴露于酮咯酸盐(20 和 30 mg/kg;腹腔注射;每周两次,持续三周)的小鼠口腔癌发生率较低[4]。
细胞实验
细胞活力测定 [4]
细胞类型: HOK、SCC4、SCC9 和 H357 细胞
测试浓度: 0-30 μM
孵育时间:48小时
实验结果:对H357、SCC4和SCC9细胞的IC50分别为2.6、7.1和8.1 μM。而正常的HOK细胞系没有表现出任何细胞死亡效应。

细胞增殖测定[4]
细胞类型: H357
测试浓度: 0.5、1.0、1.5、2.0 和 2.5 μM
孵育时间:0、8和16小时
实验结果:抑制增殖。

蛋白质印迹分析[4]
细胞类型: H357
测试浓度: 1、2.5 和 5 μM
孵育时间:48 小时
实验结果:与 DMSO 处理的细胞相比,DDX3 蛋白表达水平显着降低,但并未完全消除。上调E-钙粘蛋白的表达。

细胞凋亡分析[4]
细胞类型: H357
测试浓度: 2.5 和 5 μM
孵育时间:48小时
实验结果:诱导细胞凋亡。
动物实验
Animal/Disease Models: New Zealand White rabbits (2.0–2.7 kg), LPS endotoxin-induced ocular inflammation[1]
Doses: 50 μL ketorolac tromethamine ophthalmic solution 0.4%
Route of Administration: In eyes, twice, 2 hrs (hours) and 1 hour before LPS challenge
Experimental Results: Resulted in a nearly complete inhibition (98.7%) of LPS endotoxin-induced increases in FITC (fluorescein isothiocyanate)-dextran in the anterior chamber, and resulted in a nearly complete inhibition (97.5%) of LPS endotoxin-induced increases in aqueous PGE2 concentrations in the aqueous humor.

Animal/Disease Models: Male Wistar rats (400–450 g), spinal cord ischemia model[3]
Doses: 30 and 60 μg
Route of Administration: Intrathecal injection , 1 h before the ischemia induction for once
Experimental Results: Dramatically decreased the motor disturbances and improved the survival rate at 60 μg.

Animal/Disease Models: Dramatically decreased the motor disturbances and improved the survival rate at 60 μg.
Doses: 20 mg/kg and 30 mg/kg
Route of Administration: IP injection, two times in a week for 3 weeks
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Ketorolac is rapidly, and completely absorbed after oral administration with a bioavailability of 80% after oral administration. Cmax is attained 20-60 minutes after administration, and after intramuscular administration, the area under the plasma concentration-time curve (AUC) is proportional to the dose administered. After intramuscular administration, ketorolac demonstrates a time to maximal plasma concentration (tmax) of approximately 45-50 minutes, and a tmax of 30-40 minutes after oral administration. The rate of absorption may be reduced by food; however, the extent of absorption remains unaffected.
Ketorolac is primarily renally eliminated and approximately 92% of the dose can be recovered in the urine with 60% of this proportion recovered unchanged, and 40% recovered as metabolites. In addition 6% of a single dose is eliminated in the feces.
The apparent volume of distribution of ketorolac in healthy human subjects is 0.25 L/kg or less.
The plasma clearance of ketorolac is 0.021 to 0.037 L/h/kg. Further, studies have illustrated that clearance of oral, IM and IV doses of ketorolac are comparable which suggests linear kinetics. It should also be noted that clearance in children is about double the clearance found in adults.
Metabolism / Metabolites
Ketorolac is heavily metabolized via hydroxylation or conjugation in the liver; however, it appears that the key metabolic pathway is glucuronic acid conjugation. Enzymes involved in phase I metabolism include CYP2C8 and CYP2C9, while phase II metabolism is carried out by UDP-glucuronosyltransferase (UGT) 2B7.
Biological Half-Life
Ketorolac tromethamine is administered as a racemic mixture, therefore the half-life of each enantiomer must be considered. The half life of the S-enantiomer is ~2.5 hours, while the half life of the R-enantiomer is ~5 hours. Based on this data, the S enantiomer is cleared about twice as fast as the R enantiomer.
毒性/毒理 (Toxicokinetics/TK)
Hepatotoxicity
Prospective studies show that up to 1% of patients taking ketorolac experience at least transient serum aminotransferase elevations. These may resolve even with drug continuation. Marked aminotransferase elevations (>3 fold elevated) occur in
Likelihood score: E* (unproven but suspected cause of clinically apparent liver injury, largely due to bleeding episodes).
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Milk levels of ketorolac are low with the usual oral dosage, but milk levels have not been measured after higher injectable dosages or with the nasal spray. Ketorolac injection is used for a short time (typically 24 hours) after cesarean section in some hospital protocols with no evidence of harm to breastfed infants. However, the ketorolac dose an infant receives in colostrum is very low because of the small volume of colostrum produced. Some evidence suggests that IV ketorolac as part of a multimodal post-cesarean section analgesia reduces percentage of mothers who fail exclusive breastfeeding compared to patient-controlled IV morphine-based analgesia. Ketorolac has strong antiplatelet activity and can cause gastrointestinal bleeding. The manufacturer indicates that ketorolac is contraindicated during breastfeeding, so an alternate drug is preferred after the first 24 to 72 hours when larger volumes of milk are produced, especially while nursing a newborn or preterm infant.
Maternal use of ketorolac eye drops would not be expected to cause any adverse effects in breastfed infants. To substantially diminish the amount of drug that reaches the breastmilk after using eye drops, place pressure over the tear duct by the corner of the eye for 1 minute or more, then remove the excess solution with an absorbent tissue.
◉ Effects in Breastfed Infants
A randomized, double-blind study compared standard care of mothers receiving a cesarean section delivery (n = 60) to those receiving standard care plus multimodal pain management that included a single dose of 60 mg of intramuscular ketorolac given at the time of fascial closure (n = 60). No significant differences in abnormal neonatal growth, difficulty feeding, neonatal sedation, or respiratory depression rates between the two groups were seen during the first month postpartum.
◉ Effects on Lactation and Breastmilk
A randomized, double-blind study compared standard care of mothers receiving a cesarean section delivery (n = 60) to those receiving standard care plus multimodal pain management that included a single dose of 60 mg of intramuscular ketorolac given at the time of fascial closure (n = 60). No significant differences in breastfeeding rates (78% and 79%, respectively) were seen during the first month postpartum.
In a study comparing standard of care to enhanced recovery after cesarean section deliveries, a fixed dose of ketorolac 15 mg every 6 hours intravenously for 24 hours postpartum was part of the enhanced recovery protocol whereas as needed ketorolac 15 mg intravenously was part of the standard protocol. Patients in the enhanced recovery protocol (n = 58) had a greater frequency of exclusive breastfeeding (67%) than those in the standard protocol (48%; n = 60).
A retrospective study evaluated 1349 women who had undergone a cesarean section and were given ketorolac within 15 minutes of the end of surgery. The results indicated that there was no difference in pain control in the first 6 hours after surgery nor in the percentage of women who were breastfeeding at discharge.
A prospective cohort study of postcesarean pain control compared (1) morphine PCA and scheduled ibuprofen for the first 12 hours followed by continued scheduled ibuprofen with hydrocodone-acetaminophen as needed to a multimodal pain management regimen consisting of (2) acetaminophen 1000 mg orally every 8 hours, ketorolac 30 mg IV once initially, then 15 mg IV every 8 hours for 24 hours, then ibuprofen 600 mg orally every 8 hours for the remainder of the postoperative course with opioids given only as needed. Of women who planned to exclusively breastfeed on admission, fewer women used formula prior to discharge in the multimodal group compared to the traditional group (9% vs. 12%).
Protein Binding
>99% of Ketorolac is plasma protein bound.
参考文献

[1]. Comparison of cyclooxygenase inhibitory activity and ocular anti-inflammatory effects of ketorolac tromethamine and bromfenac sodium. Curr Med Res Opin. 2006 Jun;22(6):1133-40.

[2]. Treatment with paracetamol, ketorolac or etoricoxib did not hinder alveolar bone healing: a histometric study in rats. J Appl Oral Sci. 2010 Dec;18(6):630-4.

[3]. Intrathecal ketorolac pretreatment reduced spinal cord ischemic injury in rats. Anesth Analg. 2005 Apr;100(4):1134-9.

[4]. Ketorolac salt is a newly discovered DDX3 inhibitor to treat oral cancer. Sci Rep. 2015 Apr 28;5:9982.

其他信息
Pharmacodynamics
Ketorolac is a non-selective NSAID and acts by inhibiting both COX-1 and COX-2 enzymes which are normally responsible for converting arachidonic acid to prostaglandins. The COX-1 enzyme is constitutively active and can be found in platelets, gastric mucosa, and vascular endothelium. On the other hand, the COX-2 enzyme is inducible and mediates inflammation, pain and fever. As a result, inhibition of the COX-1 enzyme is linked to an increased risk of bleeding and risk of gastric ulceration, while the desired anti-inflammatory and analgesic properties are linked to inhibition of the COX-2 enzyme. Therefore, despite it's effectiveness in pain management, ketorolac should not be used long-term since this increases the risk of serious adverse effects such as gastrointestinal bleeding, peptic ulcers, and perforations.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C15H13N1O3
分子量
255.27
精确质量
255.089
CAS号
74103-06-3
相关CAS号
Ketorolac tromethamine salt;74103-07-4;(S)-Ketorolac;66635-92-5;(R)-Ketorolac;66635-93-6;Ketorolac-d5;1215767-66-0;Ketorolac hemicalcium;167105-81-9;Ketorolac-d4;1216451-53-4
PubChem CID
3826
外观&性状
White to light yellow solid powder
密度
1.3±0.1 g/cm3
沸点
493.2±40.0 °C at 760 mmHg
熔点
160-161°C
闪点
252.1±27.3 °C
蒸汽压
0.0±1.3 mmHg at 25°C
折射率
1.659
LogP
2.08
tPSA
59.3
氢键供体(HBD)数目
1
氢键受体(HBA)数目
3
可旋转键数目(RBC)
3
重原子数目
19
分子复杂度/Complexity
376
定义原子立体中心数目
0
InChi Key
OZWKMVRBQXNZKK-UHFFFAOYSA-N
InChi Code
InChI=1S/C15H13NO3/c17-14(10-4-2-1-3-5-10)13-7-6-12-11(15(18)19)8-9-16(12)13/h1-7,11H,8-9H2,(H,18,19)
化学名
5-benzoyl-2,3-dihydro-1H-pyrrolizine-1-carboxylic acid
别名
RS-37619; Ketorolac, Toradol, Acular,RS 37619;RS37619; Sprix, Macril, Acuvail, Lixidol
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: 10 mM
Water:<1 mg/mL
Ethanol: N/A
溶解度 (体内实验)
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。

注射用配方
(IP/IV/IM/SC等)
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO 50 μL Tween 80 850 μL Saline)
*生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。
注射用配方 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO 400 μL PEG300 50 μL Tween 80 450 μL Saline)
注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO 900 μL Corn oil)
示例: 注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。
View More

注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO 900 μL (20% SBE-β-CD in Saline)]
*20% SBE-β-CD in Saline的制备(4°C,储存1周):将2g SBE-β-CD (磺丁基-β-环糊精) 溶解于10mL生理盐水中,得到澄清溶液。
注射用配方 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (如: 500 μL 2-Hydroxypropyl-β-cyclodextrin (羟丙基环胡精) 500 μL Saline)
注射用配方 6: DMSO : PEG300 : Castor oil : Saline = 5 : 10 : 20 : 65 (如: 50 μL DMSO 100 μL PEG300 200 μL Castor oil 650 μL Saline)
注射用配方 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (如: 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
注射用配方 8: 溶解于Cremophor/Ethanol (50 : 50), 然后用生理盐水稀释。
注射用配方 9: EtOH : Corn oil = 10 : 90 (如: 100 μL EtOH 900 μL Corn oil)
注射用配方 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL EtOH 400 μL PEG300 50 μL Tween 80 450 μL Saline)


口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠)
口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素)
示例: 口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。
View More

口服配方 3: 溶解于 PEG400 (聚乙二醇400)
口服配方 4: 悬浮于0.2% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 5: 溶解于0.25% Tween 80 and 0.5% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 6: 做成粉末与食物混合


注意: 以上为较为常见方法,仅供参考, InvivoChem并未独立验证这些配方的准确性。具体溶剂的选择首先应参照文献已报道溶解方法、配方或剂型,对于某些尚未有文献报道溶解方法的化合物,需通过前期实验来确定(建议先取少量样品进行尝试),包括产品的溶解情况、梯度设置、动物的耐受性等。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 3.9174 mL 19.5871 mL 39.1742 mL
5 mM 0.7835 mL 3.9174 mL 7.8348 mL
10 mM 0.3917 mL 1.9587 mL 3.9174 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
A Comparative Efficacy Trial of IV Acetaminophen Versus IV Ketorolac for Emergency Department Treatment of Generalized Headache
CTID: NCT03472872
Phase: Phase 4    Status: Withdrawn
Date: 2024-11-29
NSAID Injection Versus Corticosteroid Injection for Basilar Thumb Arthritis
CTID: NCT05992883
Phase: Phase 3    Status: Recruiting
Date: 2024-11-26
Ketorolac Versus Corticosteroid Injections for Sacroiliac Joint Pain
CTID: NCT06081101
PhaseEarly Phase 1    Status: Not yet recruiting
Date: 2024-11-20
Effectiveness of Corticosteroid vs Ketorolac Shoulder Injections
CTID: NCT04895280
Phase: Phase 4    Status: Withdrawn
Date: 2024-11-15
Post-Op Pain Control for Prophylactic Intramedullary Nailing.
CTID: NCT03823534
Phase: Phase 3    Status: Recruiting
Date: 2024-11-06
View More

Dosing of Ketorolac in the Emergency Department
CTID: NCT03464461
Phase: Phase 4    Status: Terminated
Date: 2024-11-05


Can Single-Injection Adductor Canal Blocks Improve PostOp Pain Relief in Patients Undergoing Total Knee Arthroplasty?
CTID: NCT02276495
Phase: N/A    Status: Completed
Date: 2024-10-29
Continuous Infusion Versus Bolus Dosing for Pain Control After Pediatric Cardiothoracic Surgery
CTID: NCT02112448
Phase: N/A    Status: Completed
Date: 2024-10-24
Combined Ketorolac and Lidocaine Paracervical Block for Office Hysteroscopy
CTID: NCT06653400
Phase: Phase 1    Status: Recruiting
Date: 2024-10-22
NSAID Use After Robotic Partial Nephrectomy
CTID: NCT05842044
Phase: Phase 2    Status: Recruiting
Date: 2024-10-08
Ketorolac in Palatoplasty
CTID: NCT04771156
Phase: Phase 4    Status: Recruiting
Date: 2024-09-19
Ketorolac on Postoperative Pain Reduction in Pediatric Patients With Adenotonsillectomy
CTID: NCT05074056
Phase: Phase 4    Status: Active, not recruiting
Date: 2024-09-19
Effect of Ketorolac on Post Adenotonsillectomy Pain
CTID: NCT03467750
Phase: Phase 4    Status: Completed
Date: 2024-09-19
Ketorolac for Acute Vaso-Occlusive Crisis in Pediatric Sickle Cell Disease
CTID: NCT06579703
Phase: Phase 4    Status: Not yet recruiting
Date: 2024-08-30
Pain Control Following Total Hip Arthroplasty
CTID: NCT05062356
Phase: Phase 1    Status: Completed
Date: 2024-08-16
Meloxicam for Pain Management After Total Joint Arthroplasty (TJA)
CTID: NCT05291598
Phase: Phase 3    Status: Completed
Date: 2024-08-14
Low-Dose Short-Term Ketorolac to Reduce Chronic Opioid Use in Orthopaedic Polytrauma Patients
CTID: NCT06201676
Phase: Phase 4    Status: Not yet recruiting
Date: 2024-08-09
An Evaluation of Pain Outcomes of Ketorolac Administration in Children Undergoing Circumcision
CTID: NCT04646967
Phase: Phase 2    Status: Completed
Date: 2024-08-02
Intravenous Ketorolac Administration to Attenuate Post-procedural Pain Associated With Intrauterine Device Placement
CTID: NCT05875571
Phase: Phase 4    Status: Recruiting
Date: 2024-07-31
Intranasal Ketorolac Trial
CTID: NCT06083571
Phase: Phase 2    Status: Recruiting
Date: 2024-07-24
Efficacy of NSAID vs. Steroid-NSAID Combo Post-Selective Laser Trabeculoplasty: Phase 4, Single-Center RCT
CTID: NCT06498440
Phase: Phase 4    Status: Not yet recruiting
'Doubble blinded RCT comparing 15 versus 30mg Toradol on postoperative VAS-score in ortopedic and ENT patients.
CTID: null
Phase: Phase 4    Status: Prematurely Ended
Date: 2012-10-24
Perioperative ketorolac in high risk breast cancer patients with and without inflammation. A prospective randomized placebo-controlled trial.
CTID: null
Phase: Phase 3    Status: Completed
Date: 2012-10-09
Comparación de la efectividad analgésica del bloqueo femoral, la infiltración intraarticular o la combinación de ambas en el control del dolor en la artroplastia total de rodilla.
CTID: null
Phase: Phase 4    Status: Ongoing
Date: 2011-09-19
POST-OPERATIVE PAIN CONTROL OF PEDIATRIC PATIENTS UNDERWENT ORTHOPEDIC SURGERY: COMPARISON OF INTRAVENOUS ANALGESIA AND ONE-SHOT EPIDURAL LUMBAR NERVE BLOCK.
CTID: null
Phase: Phase 3    Status: Completed
Date: 2010-02-24
Undersøgelse af postoperative bolus infusioner ved primær hoftealloplastik
CTID: null
Phase: Phase 4    Status: Completed
Date: 2010-01-07
Evaluation of acute postsurgery pain management in patients who undergo inguen hernia surgery
CTID: null
Phase: Phase 4    Status: Completed
Date: 2009-09-16
A Two Phase Prospective Randomized Control Trial of Infiltrated Periarticular Multimodal Analgesia following Primary Total Hip Replacement
CTID: null
Phase: Phase 4    Status: GB - no longer in EU/EEA
Date: 2009-08-07
Randomized Controlled Trial on the effectiveness of ketorolac and tramadole in not compound fractures of child.
CTID: null
Phase: Phase 3    Status: Completed
Date: 2009-06-25
Prevention of pseudophakic cystoid macula oedema with pre- and postoperative ketorolac
CTID: null
Phase: Phase 4    Status: Prematurely Ended
Date: 2008-10-01
Undersøgelse af ketorolac i den postoperative smertebehandling efter total knæalloplastik
CTID: null
Phase: Phase 4    Status: Completed
Date: 2008-09-16
Postoperative pain relief for primary total knee arthroplasty: A randomised clinical trial of local infiltration anaesthesia followed by intraaticulary infusion compared to epidural infusion
CTID: null
Phase: Phase 4    Status: Prematurely Ended
Date: 2006-11-21
Investigation into the effects of steroid and local anaesthetic infiltration into soft tissues in total hip replacement wounds on post-operative pain relief.
CTID: null
Phase: Phase 4    Status: Completed
Date: 2006-10-13
Epidural analgesia vs systemic intravenous analgesia in the major gynecological surgery
CTID: null
Phase: Phase 4    Status: Ongoing
Date: 2006-03-16
Effect of diclofenac-sodium, unpreserved diclofenac-sodium or ketorolac on the inflammatory response after cataract surgery
CTID: null
Phase: Phase 4    Status: Completed
Date: 2005-06-28
Multicentre clinical trial to evaluate the efficacy and safety of dexketoprofen trometamol (50 mg t.i.d.) versus ketorolac (30 mg t.i.d.) and placebo by intravenous route, as part of balanced analgesic therapy with morphine, followed by an oral dosing, in the treatment of postoperative pain
CTID: null
Phase: Phase 4    Status: Completed
Date: 2004-11-15
Single-blind randomized controlled trial for acute abdomen analgesia in Pediatric Emergency department
CTID: null
Phase: Phase 3    Status: Ongoing
Date:

联系我们