| 规格 | 价格 | 库存 | 数量 |
|---|---|---|---|
| 1mg |
|
||
| 50mg | |||
| Other Sizes |
| 靶点 |
CRM1/chromosome region maintenance 1
|
|---|---|
| 体外研究 (In Vitro) |
在 CRM1 环的中心凸面上,KPT-251 结合在 NES 结合凹槽中 [1]。 KPT-251(持续 72 小时)可防止黑色素瘤细胞的生长 [2]。 p53、pRb、survivin 和 ERK 的磷酸化水平受 KPT-251(1 μM;0-48 小时)调节 [2]。 KPT-251(0.1 和 1 μM;0-72 小时)可诱导细胞凋亡和细胞周期停滞 [2]。
|
| 体内研究 (In Vivo) |
KPT-251(75 mg/kg/天;即每周 3 次,持续五周)可显着提高生存率,成功抑制移植到 NSG 小鼠体内的 MV4-11 细胞的发育 [1]。在小鼠黑色素瘤异种移植模型中,KPT-251(50 mg/kg;口服;每隔一天一次,持续 21 天)可减少肿瘤的形成 [2]。
|
| 细胞实验 |
蛋白质印迹分析[2]
细胞类型:黑色素瘤 BRAF WT (Mewo) 和突变细胞 (A375) 测试浓度: 1 μM 孵育持续时间:4、8、24和48小时 实验结果:防止细胞质 p53 降解,降低生存素水平,增加 ERK 磷酸化 pRb 和BRAF WT 和突变体中的 p-pRb 水平降低。 细胞周期分析[2] 细胞类型: Mewo 和 A375 细胞 测试浓度: 1 μM 孵育持续时间:24、48和72小时 实验结果:可以观察到S期缩短以及G1和/或G2细胞周期停滞。 细胞凋亡分析[2] 细胞类型: Mel-Juso、SK-MEL-28、SK-MEL-5 和 A375 细胞 测试浓度: 0.1 和 1 μM 孵育时间: 24、48 和 72 小时 实验结果: caspase-3 - 7 以剂量和时间依赖性方式测试的黑色素瘤细胞系活性增加。 |
| 动物实验 |
Animal/Disease Models: 7weeks old female NOD-SCID-IL2Rcγnull (NSG) mice, 2 × 106 MV4-11 cells expressing luciferase were introduced through tail vein injection [1]
Doses: 75 mg/kg/day Route of Administration: gavage, 3 times weekly for 5 weeks Experimental Results: demonstrated Dramatically increased survival, leukemia progression only after discontinuation of treatment, prevented leukemic cell infiltration into mouse bone marrow and spleen, and protected from normal hematopoiesis Cellular effects. Animal/Disease Models: Athymic nude mouse Nu/Nu, melanoma xenograft model [2] Doses: 50 mg/kg Route of Administration: Orally, once every other day for 21 days Experimental Results: Inhibited tumor growth, increased cleaved caspase-3 and lower Ki67. |
| 参考文献 | |
| 其他信息 |
Drugs that target the chief mediator of nuclear export, chromosome region maintenance 1 protein (CRM1) have potential as therapeutics for leukemia, but existing CRM1 inhibitors show variable potencies and a broad range of cytotoxic effects. Here, we report the structural analysis and antileukemic activity of a new generation of small-molecule inhibitors of CRM1. Designated selective inhibitors of nuclear export (SINE), these compounds were developed using molecular modeling to screen a small virtual library of compounds against the nuclear export signal (NES) groove of CRM1. The 2.2-Å crystal structure of the CRM1-Ran-RanBP1 complex bound to KPT-251, a representative molecule of this class of inhibitors, shows that the drug occupies part of the groove in CRM1 that is usually occupied by the NES, but penetrates much deeper into the groove and blocks CRM1-directed protein export. SINE inhibitors exhibit potent antileukemic activity, inducing apoptosis at nanomolar concentrations in a panel of 14 human acute myeloid leukemia (AML) cell lines representing different molecular subtypes of the disease. When administered orally to immunodeficient mice engrafted with human AML cells, KPT-251 had potent antileukemic activity with negligible toxicity to normal hematopoietic cells. Thus, KPT-SINE CRM1 antagonists represent a novel class of drugs that warrant further testing in AML patients.[1]
Resistance to BRAF inhibitor therapy places priority on developing BRAF inhibitor-based combinations that will overcome de novo resistance and prevent the emergence of acquired mechanisms of resistance. The CRM1 receptor mediates the nuclear export of critical proteins required for melanoma proliferation, survival, and drug resistance. We hypothesize that by inhibiting CRM1-mediated nuclear export, we will alter the function of these proteins resulting in decreased melanoma viability and enhanced BRAF inhibitor antitumoral effects. To test our hypothesis, selective inhibitors of nuclear export (SINE) analogs KPT-185, KPT-251, KPT-276, and KPT-330 were used to induce CRM1 inhibition. Analogs PLX-4720 and PLX-4032 were used as BRAF inhibitors. Compounds were tested in xenograft and in vitro melanoma models. In vitro, we found CRM1 inhibition decreases melanoma cell proliferation independent of BRAF mutation status and synergistically enhances the effects of BRAF inhibition on BRAF-mutant melanoma by promoting cell-cycle arrest and apoptosis. In melanoma xenograft models, CRM1 inhibition reduces tumor growth independent of BRAF or NRAS status and induces complete regression of BRAF V600E tumors when combined with BRAF inhibition. Mechanistic studies show that CRM1 inhibition was associated with p53 stabilization and retinoblastoma protein (pRb) and survivin modulation. Furthermore, we found that BRAF inhibition abrogates extracellular signal-regulated kinase phosphorylation associated with CRM1 inhibition, which may contribute to the synergy of the combination. In conclusion, CRM1 inhibition impairs melanoma survival in both BRAF-mutant and wild-type melanoma. The combination of CRM1 and BRAF inhibition synergizes and induces melanoma regression in BRAF-mutant melanoma.[2] |
| 分子式 |
C14H7F6N5O
|
|---|---|
| 分子量 |
375.228702783585
|
| 精确质量 |
375.055
|
| 元素分析 |
C, 44.81; H, 1.88; F, 30.38; N, 18.66; O, 4.26
|
| CAS号 |
1388841-50-6
|
| PubChem CID |
57519758
|
| 外观&性状 |
Off-white to yellow solid powder
|
| LogP |
3.993
|
| tPSA |
69.63
|
| 氢键供体(HBD)数目 |
0
|
| 氢键受体(HBA)数目 |
11
|
| 可旋转键数目(RBC) |
3
|
| 重原子数目 |
26
|
| 分子复杂度/Complexity |
491
|
| 定义原子立体中心数目 |
0
|
| SMILES |
C1=C(C=C(C=C1C(F)(F)F)C(F)(F)F)C2=NN(C=N2)/C=C\C3=NN=CO3
|
| InChi Key |
LDFXTRYMMZGKIC-UPHRSURJSA-N
|
| InChi Code |
InChI=1S/C14H7F6N5O/c15-13(16,17)9-3-8(4-10(5-9)14(18,19)20)12-21-6-25(24-12)2-1-11-23-22-7-26-11/h1-7H/b2-1-
|
| 化学名 |
(Z)-2-{2-[3-(3,5-Bis-trifluoromethyl-phenyl)-[1,2,4]triazol-1-yl]-vinyl}-[1,3,4]oxadiazole
|
| 别名 |
KPT-251; KPT251; (Z)-2-(2-(3-(3,5-bis(trifluoromethyl)phenyl)-1H-1,2,4-triazol-1-yl)vinyl)-1,3,4-oxadiazole; KPT251; SCHEMBL11318201; KPT251?; LDFXTRYMMZGKIC-UPHRSURJSA-N; KPT 251
|
| HS Tariff Code |
2934.99.9001
|
| 存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
| 运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
| 溶解度 (体外实验) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
|---|---|
| 溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
| 制备储备液 | 1 mg | 5 mg | 10 mg | |
| 1 mM | 2.6650 mL | 13.3252 mL | 26.6503 mL | |
| 5 mM | 0.5330 mL | 2.6650 mL | 5.3301 mL | |
| 10 mM | 0.2665 mL | 1.3325 mL | 2.6650 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
|
|
|