AUNP-12 TFA (NP-12 TFA)

别名: AUNP-12 TFA; 1353563-85-5; AUNP12 TFA; NP-12 TFA; CHEMBL4635204; AUNP-12, AUR-012 TFA; NONYLPHENOL POLYOXYETHYLENE ETHER; G13071 TFA
目录号: V77227 纯度: ≥98%
AUNP-12 (NP-12) TFA 是 PD-1 信号通路的生物活性肽拮抗剂,在抑制淋巴细胞增殖和效应功能方面对 PD-L1 和 PD-L2 具有同等的拮抗作用。
AUNP-12 TFA (NP-12 TFA) 产品类别: PD-1 PD-L1
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
1mg
5mg
10mg
Other Sizes

Other Forms of AUNP-12 TFA (NP-12 TFA):

  • AUNP-12
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
产品描述
AUNP-12 (NP-12) TFA 是 PD-1 信号通路的生物活性肽拮抗剂,在抑制淋巴细胞增殖和效应功能方面对 PD-L1 和 PD-L2 具有同等的拮抗作用。 AUNP-12 TFA具有免疫激活作用,具有良好的抗肿瘤活性,可用于更好地研究免疫相关不良事件(irAE)。
生物活性&实验参考方法
靶点
PD-1 signaling pathway[1]
体外研究 (In Vitro)
NP-12 TFA 对 PD-L1 和 PD-L2 表现出等价拮抗作用,从而促进淋巴细胞增殖及其执行效应器任务的能力 [1]。 NP-12 TFA 针对 rmPD-L1 和 rmPD-L2 的平均 EC50 值分别为 17 nM 和 16.6 nM,可恢复小鼠脾细胞检测系统中的增殖 [1]。此外,NP-12 TFA 已被证明可显着减轻重组人 PD-L1 和 PD-L2 介导的体外人 PBMC 增殖抑制,针对 PD-L1 和 PD-L2 的平均 EC50 值为 63.3 nM 和 44.1 nM ,分别[1]。
体内研究 (In Vivo)
AUNP-12 抑制小鼠皮下注射的 B16F10 小鼠黑色素瘤细胞的 44% 肿瘤生长(5 mg/kg,皮下注射,每天一次,14 天);它减少静脉注射 B16F10 细胞的肺转移。小鼠(5 mg/kg,皮下注射,每天一次,11 天);将原位注射至小鼠乳腺脂肪垫的 4T1 细胞(3 mg/kg,皮下注射,每天一次,40 天)抑制 44% 的肿瘤生长。接受 AUNP-12 治疗的动物中,10% 的动物肿瘤生长完全消退,另外 10% 的动物肿瘤生长部分消退。安乐死后测量,AUNP-12治疗的动物的肺转移平均减少>60%。
酶活实验
AUNP-12 在使用表达 hPDL2 的 HEK293 细胞抑制 PD1 与 PD-L2 结合时显示 EC50 = 0.72 nM,在使用表达 hPDL1 的 MDA-MB231 细胞的大鼠外周血单核细胞 (PBMC) 增殖测定中显示 EC50 = 0.41 nM 。这与 AUNP-012 报道的“破坏 PD1-PDL1/2 相互作用的亚纳摩尔效力”很好地对应。
细胞实验
AUNP-12 在使用表达 hPDL2 的 HEK293 细胞抑制 PD1 与 PD-L2 结合时显示 EC50 = 0.72 nM,在使用表达 hPDL1 的 MDA-MB231 细胞的大鼠外周血单核细胞 (PBMC) 增殖测定中显示 EC50 = 0.41 nM 。
动物实验
AUNP-12 is active in vivo in a lung metastasis model of B16F10 melanoma in mice, showing a 64% reduction in metastasis at 5 mg/kg (subcutaneous, once daily, 14 days).[2]
Pharmacokinetics of AUNP-12 in Balb/c mice[3]
All animal experimental procedures used in these studies including pharmacokinetic, pharmacodynamic, and efficacy experiments were approved by the Institutional Animal Ethical Committee based on the Committee for the Purpose of Control and Supervision on Experiments on Animals (India) guidelines. AUNP-12 was administered either intravenously or subcutaneously to the animals at a dose of 3 mg/kg to determine the pharmacokinetic parameters using 5% dextrose water as formulation. After administration, blood samples were collected at regular intervals until 24 hours and centrifuged to obtain the plasma fraction. The plasma samples were processed by SPE method and the eluent were analyzed by LC/MS-MS to determine the plasma concentration of the compound. From intravenous administration, plasma concentration after injection (C0 minutes), the area under the concentration−time curve from time zero to infinity (AUC 0−∞), the mean residence time, volume of distribution (Vdss), and clearance (CL) for each mouse were obtained. The maximum plasma concentration (Cmax), time to reach maximum plasma concentration (Tmax), and AUC 0−∞ were obtained from subcutaneous administration of AUNP-12 . On the basis of the intravenous and subcutaneous parameters, bioavailability of AUNP-12 was calculated.
Syngeneic mouse studies[3]
In all in vivo tumor growth inhibition (TGI) studies, tumor volumes were measured two times weekly using digital calipers and the volume was expressed in mm3 using the formula V = 0.5a × b2, where a and b are the long and short diameters of the tumor, respectively. Body weights and clinical signs were monitored twice a week. AUNP-12 was dissolved in 5% dextrose water for all the in vivo studies, except for B16F10 mouse melanoma and Renca tumor models where 1 × PBS was used. Fresh formulation was prepared every day. Compound and vehicle controls were dosed subcutaneously once a day at a dosing volume of 10 mL/kg body weight.
参考文献
[1]. US 2011/0318373 A1
[2]. Cancer Research, vol. 72, no. 8 Suppl. 1, Abstract 2850, 2012.
[3]. A Rationally Designed Peptide Antagonist of the PD-1 Signaling Pathway as an Immunomodulatory Agent for Cancer Therapy. Mol Cancer Ther. 2019 Jun;18(6):1081-1091.
其他信息
Further in vivo studies revealed that AUNP-12/AUR-012 exhibits an excellent PK-PD correlation with sustained PD for >24 h. In preclinical models of melanoma, breast and kidney cancers, AUR012/AUNP-12 showed superior efficacy compared to therapeutic agents currently used in the clinic in inhibition of both primary tumor growth and metastasis. Interestingly, dosing once in three days was equally efficacious as once a day dosing with no signs of overt toxicity and generation of neutralizing activity.[9] Rescue of proliferation of immune cells analyzed upon stimulation with anti-CD3/anti-CD-28 indicated a complete rescue of CD4+ and CD8+ T cells. Interestingly, the proliferation of CD4+, Foxp3+ T cells was completely abolished with AUR-012/AUNP-12 treatment indicating a complete suppression of regulatory T cells. Sustained activation of circulatory immune cells and their ability to secrete IFN-γ up to 72 h indicate that pharmacodynamic effects persist even after the clearance of the compound in animal models, thus supporting a dosing interval of up to 3 days. In models of melanoma, breast, kidney and colon cancers, AUR-012/AUNP-12 showed efficacy in inhibition of both primary tumor growth and metastasis. Additionally, anti-tumor activity of the compound in a pre-established CT26 model correlated well with pharmacodynamic effects as indicated by intratumoral recruitment of CD4+ and CD8+ T cells, and a reduction in PD1+ T cells (both CD4+ & Page 7/12 CD8+) in tumor and blood. In 14-day repeated dose toxicity studies, AUR-012/AUNP-12 was well tolerated at 100 times the efficacious doses. [2]
AUNP-12, likely to be identical to the compound previously known under the codenames Aur-012, Aurigene-012, or Aurigene NP-12, is an inhibitor of the so-called PD-1 pathway, and will be in development for several cancer indications. It is so far the only peptide therapeutic in this pathway and could offer more effective and safer combination opportunities compared to current approaches,[2-4] e.g. antibodies such as Nivolumab (BMS), Lambrolizumab (Merck-3475), CT-011 (Curetech), MDX-1105 (BMS), MPDL3280 (GNE) and MEDI-4736 (Medimmune-AZ), or Amplimmune’s PD-L2-FC fusion protein. PD-1, or Programmed cell death 1, is an immunoreceptor belonging to the CD28 family, and plays an important role in negatively regulating immune responses. The amino acid protein structure includes an extracellular amino acid IgV domain followed by a transmembrane region and an intracellular tail. PD-1 is expressed on the surface of activated T cells, B cells, and macrophages, and has two ligands, PD-L1 and PD-L2, which are members of the B7 family. PD-L1 is expressed on almost all murine tumor cell lines, whereas PD-L2 expression is more restricted and is expressed mainly by DCs and a few tumor lines. Blocking of PD-1 signaling pathways has been shown to result in restoration of defective immune cell functions in cancer and chronic infections. Recent advances in achieving highly durable clinical responses via inhibition of immune checkpoint proteins including PD-1 using antibodies or fusion proteins have revolutionized the outlook for cancer therapy. However, along with impressive clinical activity, severe immune-related adverse events (irAEs) due to the breaking of immune selftolerance are becoming increasingly evident. Sustained target inhibition as a result of a long halflife (>15-20 days) and >70% target occupancy for months are likely contributing to severe irAEs observed in the clinic with antibodies targeting immune checkpoint proteins.[2]
Pioneering success of antibodies targeting immune checkpoints such as PD-1 and CTLA4 has opened novel avenues for cancer immunotherapy. Along with impressive clinical activity, severe immune-related adverse events (irAE) due to the breaking of immune self-tolerance are becoming increasingly evident in antibody-based approaches. As a strategy to better manage severe adverse effects, we set out to discover an antagonist targeting PD-1 signaling pathway with a shorter pharmacokinetic profile. Herein, we describe a peptide antagonist NP-12 that displays equipotent antagonism toward PD-L1 and PD-L2 in rescue of lymphocyte proliferation and effector functions. In preclinical models of melanoma, colon cancer, and kidney cancers, NP-12 showed significant efficacy comparable with commercially available PD-1-targeting antibodies in inhibiting primary tumor growth and metastasis. Interestingly, antitumor activity of NP-12 in a preestablished CT26 model correlated well with pharmacodynamic effects as indicated by intratumoral recruitment of CD4 and CD8 T cells, and a reduction in PD-1+ T cells (both CD4 and CD8) in tumor and blood. In addition, NP-12 also showed additive antitumor activity in preestablished tumor models when combined with tumor vaccination or a chemotherapeutic agent such as cyclophosphamide known to induce "immunologic cell death." In summary, NP-12 is the first rationally designed peptide therapeutic targeting PD-1 signaling pathways exhibiting immune activation, excellent antitumor activity, and potential for better management of irAEs.[3]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C142H226N40O48.C2HF3O2
分子量
3375.57
相关CAS号
AUNP-12;1353563-85-5
外观&性状
White to off-white solid powder
化学名
(4S)-5-amino-4-[[(2S)-6-amino-2-[[(2S,3S)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2,6-bis[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-4-amino-2-[[(2S)-2-amino-3-hydroxypropanoyl]amino]-4-oxobutanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-4-carboxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-phenylpropanoyl]amino]hexanoyl]amino]-3-phenylpropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-methylbutanoyl]amino]-3-hydroxybutanoyl]amino]-5-oxopentanoyl]amino]-4-methylpentanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]hexanoyl]amino]propanoyl]amino]-5-oxopentanoyl]amino]-3-methylpentanoyl]amino]hexanoyl]amino]-5-oxopentanoic acid TFA
别名
AUNP-12 TFA; 1353563-85-5; AUNP12 TFA; NP-12 TFA; CHEMBL4635204; AUNP-12, AUR-012 TFA; NONYLPHENOL POLYOXYETHYLENE ETHER; G13071 TFA
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
溶解度 (体内实验)
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。

注射用配方
(IP/IV/IM/SC等)
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO 50 μL Tween 80 850 μL Saline)
*生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。
注射用配方 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO 400 μL PEG300 50 μL Tween 80 450 μL Saline)
注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO 900 μL Corn oil)
示例: 注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。
View More

注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO 900 μL (20% SBE-β-CD in Saline)]
*20% SBE-β-CD in Saline的制备(4°C,储存1周):将2g SBE-β-CD (磺丁基-β-环糊精) 溶解于10mL生理盐水中,得到澄清溶液。
注射用配方 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (如: 500 μL 2-Hydroxypropyl-β-cyclodextrin (羟丙基环胡精) 500 μL Saline)
注射用配方 6: DMSO : PEG300 : Castor oil : Saline = 5 : 10 : 20 : 65 (如: 50 μL DMSO 100 μL PEG300 200 μL Castor oil 650 μL Saline)
注射用配方 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (如: 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
注射用配方 8: 溶解于Cremophor/Ethanol (50 : 50), 然后用生理盐水稀释。
注射用配方 9: EtOH : Corn oil = 10 : 90 (如: 100 μL EtOH 900 μL Corn oil)
注射用配方 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL EtOH 400 μL PEG300 50 μL Tween 80 450 μL Saline)


口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠)
口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素)
示例: 口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。
View More

口服配方 3: 溶解于 PEG400 (聚乙二醇400)
口服配方 4: 悬浮于0.2% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 5: 溶解于0.25% Tween 80 and 0.5% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 6: 做成粉末与食物混合


注意: 以上为较为常见方法,仅供参考, InvivoChem并未独立验证这些配方的准确性。具体溶剂的选择首先应参照文献已报道溶解方法、配方或剂型,对于某些尚未有文献报道溶解方法的化合物,需通过前期实验来确定(建议先取少量样品进行尝试),包括产品的溶解情况、梯度设置、动物的耐受性等。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 0.2962 mL 1.4812 mL 2.9625 mL
5 mM 0.0592 mL 0.2962 mL 0.5925 mL
10 mM 0.0296 mL 0.1481 mL 0.2962 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

相关产品
联系我们