规格 | 价格 | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
靶点 |
Antithrombin III
|
---|---|
体外研究 (In Vitro) |
肝素是一种强效抗凝剂,因为它能够加速抗凝血酶抑制凝血级联中丝氨酸蛋白酶的速度。肝素和结构相关的硫酸肝素 (HY-101916) 是复杂的线性聚合物,由不同长度和不同序列的链混合物组成。肝素与含有高正电荷密度互补结合位点的肽相互作用最紧密。肝素和硫酸肝素主要表现出线性螺旋二级结构,其中磺酸基和羧基以规定的间隔和规定的方向沿着多糖主链显示。肝素与 DNA 相似,两者都是高电荷线性聚合物,可作为聚电解质。人们认为肝素主要通过与 AT III 相互作用发挥抗凝作用,增强 AT-III 介导的凝血因子(包括凝血酶和 Xa 因子)的抑制作用。肝素与 AT III 和凝血酶结合形成三元复合物,使凝血酶抑制的双分子速率常数增加 2000 倍。肝素主要位于与免疫反应密切相关的组织肥大细胞颗粒中。肝素与 FGF-2 和 FGFR-1 广泛接触,稳定 FGF-FGFR 结合。肝素还与相邻 FGF-FGFR 复合物中的 FGFR-1 接触,因此似乎促进了 FGFR 二聚化 [1]。
|
体内研究 (In Vivo) |
低分子量肝素钙(4 mg/kg;皮下注射,每天两次,连续两天)可以减轻 IRI SD 大鼠的骨骼肌损伤和全身炎症反应 [2]。
缺血再灌注损伤(IRI)是止血带手术常见的术后并发症;术后经常使用低分子量肝素钙(LMWH)来预防深静脉血栓形成。然而,接受下肢手术的患者通常会出现皮下出血,特别是在全膝关节置换术中,低分子量肝素对IRI的影响仍然存在争议。在这个实验中,我们设计了一个动物模型来观察低分子量肝素对止血带引起的骨骼肌损伤的影响。Sprague-Dawley(SD)大鼠接受了2小时的单侧后肢缺血或单独麻醉,在再灌注间隔的不同时间点,动物每天两次皮下注射4mg/kg低分子量肝素或生理盐水。在再灌注48小时时检测血清中炎症标志物的水平、凋亡蛋白的表达以及骨骼肌的组织学检查。我们发现,低分子量肝素治疗的动物骨骼肌损伤和全身炎症反应不太严重,表明低分子量白蛋白可以减轻止血带诱导的IRI。总之,肢体手术后给予低分子量血红蛋白可能在临床上有益。[2] 据我们所知,很少有证据表明肝素钙/LMWH对骨骼肌IRI的影响。在这项研究中,我们构建了止血带诱导的骨骼肌IRI大鼠模型,包括缺血2小时后再灌注48小时。通过检查形态变化、炎症反应和凋亡蛋白的表达来证实骨骼肌的损伤。为了研究LMWH对IRI的影响,我们设计了两个对照组,分别接受LMWH或生理盐水治疗,但没有后肢缺血,两个对照小组的炎症标志物水平和凋亡蛋白表达没有显著差异,表明单独使用LMWH不能提供有益的效果。在IR组中,低分子量肝素治疗大鼠的全身炎症和腓肠肌损伤明显轻于生理盐水治疗大鼠,表明低分子量WH治疗后减轻了IR诱导的骨骼肌损伤和全身炎症反应 根据Abbruzzese等人的研究结果,我们使用4mg/kg的肝素钙/LWMH,这是通过确定抑制因子Xa所需的最小浓度来计算的。在临床实践中,LWMH在止血带移除后4~6小时给予,每天维持两次。低分子量肝素的消除半衰期约为3.5小时,根据药代动力学,24小时后仍可检测到。在这项研究中,在再灌注间隔6小时时给予低分子量肝素,这与临床治疗方案相似。Abbruzzese发现,每天两次的4 mg/kg依诺肝素方案与低分子量肝素的临床应用最为相关。然而,啮齿动物模型和人类的给药方案可能不同[2]。 |
酶活实验 |
生化分析[2]
测定血清中MDA和SOD的浓度,以确定氧化应激反应。总之,样品按照MDA和SOD检测试剂盒的说明进行处理,并用微孔板阅读器测量吸光度。使用免疫吸附试验(ELISA)试剂盒测量TNF-α和IL-6的浓度以评估炎症反应,具体而言,根据制造商的说明处理和孵育样品,测量430nm处的吸光度,并根据标准曲线计算TNF-α和IL-6的浓度。 半胱天冬酶3免疫组织化学[2] 为了确定骨骼肌中的凋亡程度,通过免疫组织化学检查评估胱天蛋白酶3的表达。使用抗切割胱天蛋白酶3的第一抗体和山羊抗兔抗体作为制造商方案,对载玻片进行进一步处理和染色。在40倍放大倍数下观察载玻片。每张载玻片中捕获了20个视野,由两名盲病理学家检查图像,以量化切割的胱天蛋白酶3的表达。 |
细胞实验 |
组织学评估[2]
腓肠肌在福尔马林中固定72小时,在PBS(磷酸盐缓冲盐水)中冲洗并脱水,通过石蜡包埋处理,切成4μm厚的纵向切片,然后脱蜡并复水。每个腓肠肌样本切五张载玻片,其中三张用苏木精-伊红染色进行形态学观察,两张进一步处理进行IHC检查。在放大20倍的光学显微镜下检查载玻片。每张幻灯片中捕获了20个视野,并计算了每个样本中受伤的肌纤维数量。骨骼肌的IRI由两名对实验组不知情的病理学家进行评估。 凋亡蛋白的蛋白质印迹分析[2] 将腓肠肌从-80°C下取出,在室温下解冻,用生理盐水清洗以去除血液,用滤纸干燥并称重。肌肉在RIPA缓冲液和PMSF(100:1)中均质化,在20000 g下离心20分钟,吸出上清液,用装载缓冲液处理,在100°C下煮沸5分钟。使用二辛可宁酸(BCA)试剂盒测定蛋白质的总浓度,根据其标准曲线计算每个样品中的蛋白质浓度。分离蛋白质后,将其转移到PVDF膜上,用阻断缓冲液封闭,然后与一抗孵育过夜,包括抗切割胱天蛋白酶3(1:1000)、抗胱天蛋白酶9(1:1000”)、抗bax(1:2000)、抗bcl2(1:2000”),用TBST(tris缓冲盐水和吐温)清洗,用山羊抗兔抗体孵育1小时。用抗β-肌动蛋白(1:5000)重新印迹相同的膜以使其正常化。图像在化学发光成像系统中曝光。 |
动物实验 |
Animal/Disease Models:Adult Sprague-Dawley rats (male, 200-300 g) with ischemia-injury (IR)[2]
Doses: 4 mg/kg Route of Administration: S.c. twice daily for 2 days Experimental Results: Could attenuated the tourniquet-induced IRI. Animals and grouping [2] Forty adult Sprague-Dawley rats (male, 200–300 g) were used for this experiment, animals were randomly divided into four groups according to the ischemia-injury (IR) protocols and post hoc administration of heparin calcium/LMWH or saline: LMWH-treated IR group (IR-LMWH, n=10), saline-treated IR group (IR-saline, n=10), LMWH-treated control group (control-LMWH, n=10), and saline-treated control group (control-saline, n=10). Construction of the IR model and post hoc intervention [2] Animals were anesthetized by pentobarbital sodium (50 mg/kg, intraperitoneal injection). A 37°C-heating plate was used to maintain body temperature during anesthesia. In IR groups (IR-LMWH and IR-saline), an orthodontic rubber band was located around the right upper thigh for 2 hours to induce acute unilateral hindlimb ischemia, which was identified by the absence of arterial pulse, cyanosis, and coldness of the limb (Fig. 1). Animals in control groups (control-LMWH and control-saline) were just anesthetized for the same time. Additional doses of pentobarbital sodium (10 mg/kg) were used to maintain anesthesia during the ischemia period, at the same time, animals received an intraperitoneal injection of 0.2 ml normal saline every 1 h to prevent dehydration. After recovering from anesthesia, animals were raised in an SPF laboratory with controlled temperature and humidity, water and mouse chow were provided unlimitedly. At 6 h, 18 h, 30 h, 42 h of reperfusion, animals received whether 4 mg/kg of heparin calcium/LMWH or the same dose of saline subcutaneously, which was similar to the twice-daily (Q12h) clinical use of anticoagulant postoperatively. |
参考文献 | |
其他信息 |
The present study revealed that LMWH had anti-inflammatory effects, early use of LMWH after surgery was beneficial for attenuating tourniquets-induced IRI in the rat model, suggesting that it should not be considered as a relative contraindication even though subcutaneous hemorrhage is observed. Sine the LMWH is widely used in patients undergoing extremity surgery, it is worth investigating the dosing protocols in humans, if similar results were observed, LMWH might be considered a separate indication for clinical management of IRI. However, this study is mainly focused on animal experiments, the dosing protocol, and the translatability of rodent models must be considered in clinical practice, future studies should focus on the mechanisms.
There were several limitations in this study. First, the blood flow in the hind limb was not measured, which was useful in evaluating the situation of ischemia, however, the IR model of the hindlimb induced by rubber tourniquets has been demonstrated successful by many studies. Second, it is crucial to achieving the balance between the benefits in attenuating the IRI and the risk of hemorrhage, we did not observe subcutaneous hemorrhage in rats because they were put to death at 48 h reperfusion. Third, though the rodent models are widely used in the experimental study of IRI and are relatively translatable, they are inferior to primate models. Furthermore, it is difficult to set a control group that is absent from anticoagulants after lower limb surgery in clinical trials. However, the conclusion of the present study was consistent with previous studies that investigated the effect of LMWH on IRI in the brain and other organs. In conclusion, this basic experimental research demonstrated that post hoc of LMWH after tourniquet-induced IRI was beneficial, which may provide a reference to clinical management of IRI after tourniquet used limb surgery.[2] |
分子式 |
C24H47CAN2O37P4S5
|
---|---|
元素分析 |
C, 26.58; H, 3.60; Ca, 3.41; N, 2.38; O, 50.38; S, 13.64
|
CAS号 |
37270-89-6
|
相关CAS号 |
9005-49-6 (free); 37270-89-6 (Ca)
|
PubChem CID |
168009871
|
外观&性状 |
Typically exists as solid at room temperature
|
氢键供体(HBD)数目 |
2
|
氢键受体(HBA)数目 |
9
|
可旋转键数目(RBC) |
21
|
重原子数目 |
89
|
分子复杂度/Complexity |
1580
|
定义原子立体中心数目 |
0
|
SMILES |
[CaH+].OC1C(OC2C(COS(=O)(=O)O)OC(OP)C(NS(=O)(=O)O)C2O)OC(C(=O)O)C(OP)C1O.OC1C(OC2C(OS(=O)(=O)O)C(O)C(OP)C(C(=O)O)O2)C(COS(=O)(=O)O)OC(OP)C1NS(=O)(=O)O
|
别名 |
Heparin calcium; Nadroparin calcium (MW 15000-19000)
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。