Telacebec (Q203; IAP6) Ditosylate

别名: Q-203 ditosylate; Q 203 ditosylate; Q-203 ditosylate; 1566517-83-6; UNII-QRS143W4AR; QRS143W4AR; Imidazo(1,2-a)pyridine-3-carboxamide, 6-chloro-2-ethyl-N-((4-(4-(4-(trifluoromethoxy)phenyl)-1-piperidinyl)phenyl)methyl)-, 4-methylbenzenesulfonate (1:2); Q203 Ditosylate; TELACEBEC DITOSYLATE; Q203ditosylate
目录号: V3784 纯度: ≥98%
Telacebec (Q203; IAP6) tosylate 是一种咪唑并吡啶酰胺 (IAP) 化合物,通过靶向呼吸道细胞色素 bc1 复合物来阻断结核分枝杆菌的生长。
Telacebec (Q203; IAP6) Ditosylate CAS号: 1566517-83-6
产品类别: Others 5
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of Telacebec (Q203; IAP6) Ditosylate:

  • Telacebec (Q-203; IAP-6)
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
Telacebec (Q203; IAP6) tosylate 是一种咪唑并吡啶酰胺 (IAP) 化合物,通过靶向呼吸道细胞色素 bc1 复合物来阻断结核分枝杆菌的生长。它具有治疗结核病的潜力。 Q203 在低纳摩尔范围内抑制肉汤培养基中 MDR 和 XDR 结核分枝杆菌临床分离株的生长,并且在小鼠结核病模型中以低于 1 mg/kg 体重的剂量有效,这凸显了 Q203 的效力。 Q203 对参考菌株结核分枝杆菌 H37Rv 有活性,在肉汤培养基中的 MIC50 为 2.7 nM,在巨噬细胞内的 MIC50 为 0.28 nM。此外,Q203 显示出与每日一次给药兼容的药代动力学和安全性特征。总之,这些数据表明 Q203 是治疗结核病的有前途的新临床候选药物。
生物活性&实验参考方法
靶点
Mycobacterium tuberculosis H37Rv( MIC50=2.7 nM )
体外研究 (In Vitro)
体外活性:Q203 是一种咪唑并吡啶酰胺 (IAP) 化合物,通过靶向呼吸道细胞色素 bc1 复合物来阻断结核分枝杆菌的生长。它具有治疗结核病的潜力。 Q203 在低纳摩尔范围内抑制肉汤培养基中 MDR 和 XDR 结核分枝杆菌临床分离株的生长,并且在小鼠结核病模型中以低于 1 mg/kg 体重的剂量有效,这凸显了 Q203 的效力。 Q203 对参考菌株结核分枝杆菌 H37Rv 有活性,在肉汤培养基中的 MIC50 为 2.7 nM,在巨噬细胞内的 MIC50 为 0.28 nM。此外,Q203 显示出与每日一次给药兼容的药代动力学和安全性特征。总之,这些数据表明 Q203 是治疗结核病的有前途的新临床候选药物。激酶测定:Q203 对参考菌株结核分枝杆菌 H37Rv 有活性,在培养基中的 MIC50 为 2.7 nM,在巨噬细胞内的 MIC50 为 0.28 nM。细胞测定:
Telacebec (Q203; IAP6)对参考菌株结核分枝杆菌H37Rv有活性,最低浓度为抑制培养液中50%生物体(MIC50) 2.7 nM,巨噬细胞内MIC50为0.28 nM(图1b,c)。在三个中心采用四种不同的技术(见在线方法)测定培养液培养基中的MIC50,结果具有可比性。此外,我们通过琼脂板的CFU测定,证实了Q203在液体肉汤培养基中的活性。[1]

深入了解Telacebec (Q203; IAP6)并确定其分子靶点,我们选择了两种不同的IPA衍生物IPA04和IPA05的自发抗性突变体(Supplementary Fig. 5)。在确认了对Q203的稳定基因型抗性后(图3a),我们对来自独立生物重复的6个自发抗性突变体进行了全基因组测序。突变体显示Q203的MIC50持续增加了几个数量级,但仍然对标准抗结核药物敏感。我们在所有六个突变体中发现了细胞色素b亚基(qcrB,也称为细胞色素bc1复合体的Rv2196)中的单个氨基酸取代(图3b)。对另外18株独立的自发性耐药突变体(全部受试的18株)进行qcrB序列分析证实:Thr313突变为丙氨酸或异亮氨酸(图3b)与特拉西贝克(Q203;IAP6)耐药性相关。此外,通过同源重组在亲本结核分枝杆菌H37Rv中重新引入突变Ala313,获得了对Q203的抗性(图3a),表明这种取代直接和特异性地参与了对该化合物的抗性机制。在1 μM浓度下,对IPA04和IPA05的6个独立突变选择实验进行综合分析,结果表明,IPA04和IPA05的自发突变率为2.4 × 10−8,抗性突变体出现的概率较低。直接在Q203上选择的自发抗性突变体也对Q203具有高度抗性(补充图6),并且在qcrB中含有多态性T313A,而我们在两个泛易感和三个XDR临床分离株中未发现qcrB突变(补充图7)。最近,在由相关IPA衍生物选择的牛分枝杆菌卡介苗(BCG)突变体中发现了类似的qcrB多态性,该突变体在体外抑制结核分枝杆菌生长的活性低于Q203,且未优化用于临床。[1]

值得注意的是,在QP位点抑制剂的结合中起关键作用的几个残基(例如,stigmatellin)或涉及对此类抑制剂的抗性,或两者都位于ef区(补充图8),这表明Telacebec (Q203;IAP6)类似于作用于QP位点的非选择性抑制剂。考虑到细胞色素bc1在呼吸电子传递链中的关键作用,我们测试了Telacebec (Q203;IAP6 可能干扰结核分枝杆菌ATP合成。我们发现Telacebec (Q203; IAP6)触发了细胞内ATP的快速减少,IC50为1.1 nM(图3c)。在类似的实验条件下(见在线方法),莫西沙星或链霉素没有减少ATP池大小,而贝达喹啉有(IC50为27.7 nM)。最后,Q203能够在小于10 nM的IC50下干扰缺氧非复制结核中的ATP稳态(图3d)。在低浓度下快速抑制ATP合成强烈提示抑制细胞色素bc1活性是Q203[1]的主要作用方式。
体内研究 (In Vivo)
Q203 显示出与每日一次给药兼容的药代动力学和安全性特征。 Q203的生物利用度为90%,终末半衰期为23.4小时。分布容积适中(5.27 l/kg体重),全身清除率低(4.03 mL/min/kg)。治疗 4 周后,在按每公斤体重 0.4、2 和 10 毫克 Q203 治疗的组中,观察到结核分枝杆菌 H37Rv 细菌载量分别减少了 90%、99% 和 99.9%
酶活实验
肝微粒体稳定性测定。[1] 将化合物(终浓度为2μM,溶于0.2%DMSO中)与0.5 mg mL-1人(200只,混合性别)、雄性狗、雄性大鼠或雄性小鼠肝微粒体在磷酸钾缓冲液中孵育。通过加入NADPH引发反应,并立即或在10、20、30或60分钟时停止,以精确估计清除率。采用带有电喷雾电离(ESI)的三重四极杆Quattro Premier质谱仪进行样品分析。样品通过捕集筒(Acquity BEH RP18 50 mm×2.1 mm,1.7μm,Waters,Milford,MA),然后通过分析柱。通过与0分钟时的初始量进行比较来计算剩余化合物的百分比。然后使用一级反应动力学计算半衰期。
CYP450抑制试验。[1] 该测定使用具有单个重组人细胞色素P450(rhCYP)同工酶的单个荧光探针底物,并根据先前发表的方法进行荧光检测36。用于每种同工酶的探针底物(在0.5%DMSO中)如下:CYP3A4为7-苄氧基-4-(三氟甲基)-香豆素,CYP2D6为3-[2-(N,N-二乙基-N-甲基铵)乙基]-7-甲氧基-4-甲基香豆素(AMMC),1A2和2C19为3-氰基-7-乙氧基香豆素(CEC),2C9为7-甲氧基-4-(三氟甲基)香豆素(MFC)。使用Victor3 V多标记板阅读器测量荧光。使用三倍连续稀释的八点浓度曲线测定IC50。
细胞实验
细胞毒性。[1] 如前所述,使用MTT(3-(4,5-二甲基噻唑-2-基)-2,5-二苯基溴化四唑)存活率测定法对人细胞系SH-SY5Y(脑)、HEK293(肾)和HepG2(肝)进行了细胞毒性测试。
结核分枝杆菌H37Rv ATP耗竭试验。[1] 将结核分枝杆菌H37Rv暴露于受试化合物24小时(需氧)或5天(厌氧),与等体积的BacTiter-Glo试剂混合,在黑暗中孵育10分钟。在Victor3 V多标签平板阅读器上记录发光。
动物实验
Rats: Sprague Dawley rats are used for pharmacokinetic studies. Compounds (Q203) are given at a dose of 2 mg per kg body weight intravenously or 10 mg per kg body weight orally. The compounds (Telacebec (Q203; IAP6)) are formulated in 20% TPGS (d-α tocopheryl polyethylene glycol 1000 succinate) for repeated-dose studies and in 40% PEG400, pH4 for single-dose studies. Blood samples are taken through the caudal vena cava using 1-mL syringes before perfusion. Samples are collected from three mice or rats at 0.5, 1, 2, 6, 12, 24 and 48 h post-dose. Blood samples are centrifuged at 3,200g for 10 min at 4 °C. Following centrifugation, plasma is collected and frozen until further analysis. Compound concentrations are determined by LC-MS;
Mice: Efficacy of Telacebec (Q203; IAP6) in a mouse model of established tuberculosis is studied. Bacterial loads are enumerated in the lung of infected mice after 14 d and 28 d of treatment. Q203 is used at 0.4, 2 and 10 mg per kg body weight. Bedaquiline and isoniazid (INH) are used as positive controls at 6.5 and 15 mg per kg body weight, respectively. Five mice per group and per time point are used.
Pharmacokinetics.[1]
BALB/c mice and Sprague Dawley rats were used for pharmacokinetic studies. Compounds were given at a dose of 2 mg per kg body weight intravenously or 10 mg per kg body weight orally. Otherwise stated, the compounds [Telacebec (Q203; IAP6)] were formulated in 20% TPGS (D-α tocopheryl polyethylene glycol 1000 succinate) for repeated-dose studies and in 40% PEG400, pH4 for single-dose studies. Blood samples were taken through the caudal vena cava using 1-mL syringes before perfusion. Samples were collected from three mice or rats at 0.5, 1, 2, 6, 12, 24 and 48 h post-dose. Blood samples were centrifuged at 3,200g for 10 min at 4 °C. Following centrifugation, plasma was collected and frozen until further analysis. Compound concentrations were determined by LC-MS.
In vivo efficacy in the mouse model of tuberculosis.[1]
The acute model was performed as previously described. Briefly, mice were infected with a high dose of M. tuberculosis H37Rv. Dosing was initiated 6 d after infection. Drugs [Telacebec (Q203; IAP6)] were administered orally for 3 d. Bacterial load in the lungs of infected mice was determined by colony-forming unit (CFU) enumeration. For the established mouse model, BALB/c mice were infected with 2 × 102 to 2 × 103 CFU of M. tuberculosis H37Rv by the intranasal route. Treatment was initiated 3 weeks after infection. Drugs were formulated in 20% TPGS and administered by oral gavage for 28 d, five times per week. Bacterial load in the lungs of infected mice was determined by CFU enumeration. For histopathology analysis, segments of the lungs were fixed with 10% neutral formalin, embedded in paraffin and processed for histology. Sections (5 μm) were stained with H&E. Histologic sections were used for morphologic analysis of the size and number of granulomas using an image analyzer.
药代性质 (ADME/PK)
The metabolic stability of Telacebec (Q203; IAP6) in microsomes and cryopreserved hepatocytes from human, monkey, rat and dog origin was high (Supplementary Table 5), suggesting that Telacebec (Q203; IAP6) may achieve good blood exposure in humans. Because any new antitubercular drug will be given clinically in combination with other medications, the absence of drug-drug interactions is crucial. Telacebec (Q203; IAP6) did not inhibit any of the cytochrome P450 (CYP450) isoenzymes tested, nor did it induce human pregnane X receptor (hPXR) activation (Supplementary Table 5). In addition, it was not a substrate or an inhibitor for the efflux transporter P-glycoprotein (Supplementary Table 5), indicating that it has low potential for drug-drug interaction.[1]
Next, we determined the pharmacokinetic profile of Telacebec (Q203; IAP6) in mice (Supplementary Table 6). Telacebec (Q203; IAP6) had a bioavailability of 90% and a terminal half-life of 23.4 h. The volume of distribution was moderate (5.27 l per kg body weight), and the systemic clearance was low (4.03 ml min−1 kg−1). The drug concentration in lungs was two- to threefold higher than in the serum (Supplementary Table 7), which is a desirable property for an antitubercular drug15. Given its desirable pharmacokinetic and safety profile, we assessed Telacebec (Q203; IAP6) for in vivo efficacy. We initially evaluated Telacebec (Q203; IAP6) in an acute mouse model of tuberculosis16. It promoted a reduction in bacterial load of more than 90% at a dose of 10 mg per kg body weight, an effect comparable to that of bedaquiline or isoniazid (Fig. 2a). We further evaluated Telacebec (Q203; IAP6) in a mouse model of established tuberculosis. After 4 weeks of treatment, we observed reductions of 90%, 99% and 99.9% in M. tuberculosis H37Rv bacterial load in the groups treated with v at 0.4, 2 and 10 mg per kg body weight, respectively (Fig. 2b). Telacebec (Q203; IAP6) was slow acting compared to isoniazid; the reduction in bacterial number was less than one order of magnitude in the first 2 weeks of treatment, but it was more than two orders of magnitude in the following 2 weeks. This profile might be explained by its pharmacokinetic properties or by its mode of action. Of note, bedaquiline displayed a similar time-dependent efficacy (Fig. 2b). We also observed that Telacebec (Q203; IAP6) reduced the formation of lung granulomatous lesions (Fig. 2 c–i). In untreated mice, the lung sections contained multiple tuberculosis granulomatous foci (Fig. 2c), consisting predominantly of lymphocytes surrounding intra-alveolar macrophages (Fig. 2f). In isoniazid-treated groups, we observed a reduction in the size of the granulomatous foci; however, the number of the inflammatory lesions was comparable to that in the untreated control group (Fig. 2d,g,i). In contrast, we observed only a limited number of small granulomatous foci in the lungs of the mice treated with Telacebec (Q203; IAP6) (Fig. 2e–i). Notably, other very effective drugs, such as bedaquiline, also have a strong beneficial effect on lung pathology [1].
毒性/毒理 (Toxicokinetics/TK)
Given that successful treatment of tuberculosis lasts at least six months, the safety profile of a clinical candidate is of utmost importance. To evaluate the cytotoxicity of Telacebec (Q203; IAP6), we measured the minimum concentration that induces cell death in three eukaryotic cell lines. We did not observe cytotoxicity in any of the cell lines up to a concentration of 10 μM (Fig. 1d), which gives Telacebec (Q203; IAP6) a selectivity index of >3,700. We used a hERG potassium channel patch-clamp assay to test whether Q203 would cause QT interval prolongation as a result of hERG potassium channel inhibition. Q203 did not inhibit hERG, suggesting a low risk for cardiotoxicity (Supplementary Table 5). In addition, Q203 had no genetic toxicity in a mini-Ames mutagenicity test and in micronucleus formation assays (Supplementary Table 5). To test for acute toxicity in mice, we administered a high dose of Q203 and observed the mice for 2 weeks. The mice tolerated, without clinical signs of toxicity, a single oral administration of 1,000 mg per kg body weight of Q203, a dose that resulted in a maximum serum concentration of 14.8 μg ml−1 at 24 h and serum concentrations of >3 μg ml−1 for at least 10 d (Supplementary Fig. 3). Furthermore, in a rat long-term administration study, Q203 was well tolerated without body weight loss (Supplementary Fig. 4) or clinical signs of toxicity when administered daily at a dose of 10 mg per kg body weight for 20 d. These data showed that Q203 was well tolerated at a prolonged exposure level.[1]
参考文献
2013 Sep;19(9):1157-60.
其他信息
New therapeutic strategies are needed to combat the tuberculosis pandemic and the spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) forms of the disease, which remain a serious public health challenge worldwide. The most urgent clinical need is to discover potent agents capable of reducing the duration of MDR and XDR tuberculosis therapy with a success rate comparable to that of current therapies for drug-susceptible tuberculosis. The last decade has seen the discovery of new agent classes for the management of tuberculosis, several of which are currently in clinical trials. However, given the high attrition rate of drug candidates during clinical development and the emergence of drug resistance, the discovery of additional clinical candidates is clearly needed. Here, we report on a promising class of imidazopyridine amide (IPA) compounds that block Mycobacterium tuberculosis growth by targeting the respiratory cytochrome bc1 complex. The optimized IPA compound Q203 inhibited the growth of MDR and XDR M. tuberculosis clinical isolates in culture broth medium in the low nanomolar range and was efficacious in a mouse model of tuberculosis at a dose less than 1 mg per kg body weight, which highlights the potency of this compound. In addition, Q203 displays pharmacokinetic and safety profiles compatible with once-daily dosing. Together, our data indicate that Q203 is a promising new clinical candidate for the treatment of tuberculosis. [1]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C43H44CLF3N4O8S2
分子量
901.41
精确质量
900.224
元素分析
C, 57.30; H, 4.92; Cl, 3.93; F, 6.32; N, 6.22; O, 14.20; S, 7.11
CAS号
1566517-83-6
相关CAS号
1334719-95-7;1566517-83-6 (ditosylate);
PubChem CID
91617801
外观&性状
Typically exists as solid at room temperature
tPSA
184Ų
氢键供体(HBD)数目
3
氢键受体(HBA)数目
13
可旋转键数目(RBC)
9
重原子数目
61
分子复杂度/Complexity
1000
定义原子立体中心数目
0
SMILES
ClC1C=CC2=NC(CC)=C(C(NCC3C=CC(=CC=3)N3CCC(C4C=CC(=CC=4)OC(F)(F)F)CC3)=O)N2C=1.S(C1C=CC(C)=CC=1)(=O)(=O)O.S(C1C=CC(C)=CC=1)(=O)(=O)O
InChi Key
CCGFTOLSNJBYDV-UHFFFAOYSA-N
InChi Code
InChI=1S/C29H28ClF3N4O2.2C7H8O3S/c1-2-25-27(37-18-22(30)7-12-26(37)35-25)28(38)34-17-19-3-8-23(9-4-19)36-15-13-21(14-16-36)20-5-10-24(11-6-20)39-29(31,32)33;2*1-6-2-4-7(5-3-6)11(8,9)10/h3-12,18,21H,2,13-17H2,1H3,(H,34,38);2*2-5H,1H3,(H,8,9,10)
化学名
6-chloro-2-ethyl-N-[[4-[4-[4-(trifluoromethoxy)phenyl]piperidin-1-yl]phenyl]methyl]imidazo[1,2-a]pyridine-3-carboxamide;4-methylbenzenesulfonic acid
别名
Q-203 ditosylate; Q 203 ditosylate; Q-203 ditosylate; 1566517-83-6; UNII-QRS143W4AR; QRS143W4AR; Imidazo(1,2-a)pyridine-3-carboxamide, 6-chloro-2-ethyl-N-((4-(4-(4-(trifluoromethoxy)phenyl)-1-piperidinyl)phenyl)methyl)-, 4-methylbenzenesulfonate (1:2); Q203 Ditosylate; TELACEBEC DITOSYLATE; Q203ditosylate
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: >10 mM
Water:N/A
Ethanol:N/A
溶解度 (体内实验)
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。

注射用配方
(IP/IV/IM/SC等)
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO 50 μL Tween 80 850 μL Saline)
*生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。
注射用配方 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO 400 μL PEG300 50 μL Tween 80 450 μL Saline)
注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO 900 μL Corn oil)
示例: 注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。
View More

注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO 900 μL (20% SBE-β-CD in Saline)]
*20% SBE-β-CD in Saline的制备(4°C,储存1周):将2g SBE-β-CD (磺丁基-β-环糊精) 溶解于10mL生理盐水中,得到澄清溶液。
注射用配方 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (如: 500 μL 2-Hydroxypropyl-β-cyclodextrin (羟丙基环胡精) 500 μL Saline)
注射用配方 6: DMSO : PEG300 : Castor oil : Saline = 5 : 10 : 20 : 65 (如: 50 μL DMSO 100 μL PEG300 200 μL Castor oil 650 μL Saline)
注射用配方 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (如: 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
注射用配方 8: 溶解于Cremophor/Ethanol (50 : 50), 然后用生理盐水稀释。
注射用配方 9: EtOH : Corn oil = 10 : 90 (如: 100 μL EtOH 900 μL Corn oil)
注射用配方 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL EtOH 400 μL PEG300 50 μL Tween 80 450 μL Saline)


口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠)
口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素)
示例: 口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。
View More

口服配方 3: 溶解于 PEG400 (聚乙二醇400)
口服配方 4: 悬浮于0.2% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 5: 溶解于0.25% Tween 80 and 0.5% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 6: 做成粉末与食物混合


注意: 以上为较为常见方法,仅供参考, InvivoChem并未独立验证这些配方的准确性。具体溶剂的选择首先应参照文献已报道溶解方法、配方或剂型,对于某些尚未有文献报道溶解方法的化合物,需通过前期实验来确定(建议先取少量样品进行尝试),包括产品的溶解情况、梯度设置、动物的耐受性等。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 1.1094 mL 5.5469 mL 11.0937 mL
5 mM 0.2219 mL 1.1094 mL 2.2187 mL
10 mM 0.1109 mL 0.5547 mL 1.1094 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
Telacebec (T) Treatment in Adults With Buruli Ulcer (BU).
CTID: NCT06481163
Phase: Phase 2
Status: Not yet recruiting
Date: 2024-07-03
A Phase 2 Study to Evaluate Biomarker Change, Efficacy, Pharmacokinetics, Safety and Tolerability of Telacebec (Q203) in Covid-19 Patients
CTID: NCT04847583
Phase: Phase 2
Status: Terminated
Date: 2022-03-02
A Phase 2 Study to Evaluate Early Bactericidal Activity, Safety, Tolerability, and Pharmacokinetics of Multiple Oral Doses of Telacebec (Q203)
CTID: NCT03563599
Phase: Phase 2
Status: Completed
Date: 2019-09-10
A Dose-Escalation Study to Evaluate Safety, Tolerability and Pharmacokinetics of Multiple Doses of Q203 in Normal Healthy Male and Female Volunteers
CTID: NCT02858973
Phase: Phase 1
Status: Completed
Date: 2018-05-14
A Dose-Escalation Study to Evaluate Safety, Tolerability and Pharmacokinetics of Single Doses of Q203 in Normal, Healthy, Male and Female Volunteers
CTID: NCT02530710
Phase: Phase 1
Status: Completed
Date: 2016-12-06
联系我们