规格 | 价格 | 库存 | 数量 |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
靶点 |
OX2 Receptor
|
---|---|
体外研究 (In Vitro) |
体外活性:通过高通量筛选 (HTS) 发现的 TCS-OX2-29 是一种有效的选择性 OX2 受体拮抗剂,IC50 为 40 nM。与 OX1 相比,它对 OX2 的选择性高出 250 倍以上。食欲素受体拮抗剂代表了一种直接针对睡眠/觉醒调节的失眠治疗新方法。几种此类化合物已进入临床开发,包括双重食欲素受体拮抗剂suvorexant和almorexant。 TCS-OX2-29 显示对离子通道和转运蛋白的选择性(10 μM 时抑制 <30%),其中包括与食物摄入相关的 G 蛋白偶联受体,包括甘丙肽和神经肽 Y。TCS-OX2-29 抑制食欲素 A 诱导的 IP3转染 OX2 受体的 CHO 细胞中的积累和 ERK1/2 磷酸化。激酶测定:在接种稳定表达的 CHO 细胞后 24 小时,在 96 孔板中进行基于细胞的肌醇磷酸(Cisbio BioAssays,Codolet,法国)和 ERK1/2 磷酸化(Surefire,PerkinElmer,Waltham,MA,USA)功能测定人orexin-2受体,密度为25000个细胞/孔;完整的检测详细信息位于支持信息中。细胞测定:将瞬时表达人 OX2 受体的 HEK293 细胞的细胞膜与 [3H]-EMPA 一起在 Krebs 测定缓冲液(8.5 mM HEPES、1.3 mM CaCl2、1.2 mM MgSO4、118 mM NaCl、4.7 mM KCl)中孵育。 、4 mM NaHCO3、1.2 mM KH2PO4、11 mM 葡萄糖,pH 7.4),总测定体积为 0.25 mL,最终 DMSO 浓度为 1%。在室温下孵育 90 分钟后,通过 GF/B 96 孔玻璃纤维板快速过滤,并使用 Tomtec 细胞收集器用 ddH2O 洗涤 5 × 0.25 mL 来终止反应。使用 Lablogic SafeScint 通过液体闪烁测定结合放射性,并在 microbeta 液体闪烁计数器上检测。非特异性结合被确定为在 10 μM 饱和浓度的拮抗剂 EMPA 存在下剩余的结合。通过将膜(2 μg 蛋白质/孔)与一系列浓度的 [3H]-EMPA (0.4 nM–15 nM) 一起孵育来进行饱和度研究。使用 SafeScint 和 Beckman LS 6000 液体闪烁计数器测定放射性配体浓度。将膜(2 μg 蛋白质/孔)与 1.5 nM 浓度的 [3H]-EMPA 和一系列浓度的测试化合物一起孵育,进行竞争结合。
|
体内研究 (In Vivo) |
TCS-OX2-29 (5-10 mg/kg;腹腔内注射;成年雄性NMRI小鼠)处理显著抑制naïve和依赖小鼠的条件位置偏好(CPP)的获得和表达[2]。
条件位置偏好(CPP)与naïve小鼠的食欲能系统激活有关;然而,在这种模式中,不同的食欲素受体的独特作用尚未被表征。此外,依赖小鼠的食欲素和吗啡之间的关系可能不等于naïve小鼠,似乎值得研究。我们研究了食欲素-1受体拮抗剂SB 334867和食欲素-2受体拮抗剂TCS-OX2-29对naïve和吗啡依赖小鼠吗啡条件位置偏好(CPP)获得和表达的影响。以SB 334867为3个剂量(10、20、30 mg/kg), TCS-OX2-29为2个剂量(5、10 mg/kg),吗啡为最高有效剂量(5 mg/kg)。结果显示,SB 334867在naïve小鼠中抑制CPP的获得和表达,但在吗啡依赖动物中无法阻断CPP的获得和表达。相比之下,TCS-OX2-29在naïve和依赖小鼠中均显著抑制CPP的获得和表达。吗啡的奖赏作用在吗啡依赖小鼠中与食欲素-2受体有较强的相关性,而在naïve小鼠中则同时依赖这两种受体。这一发现,如果在其他研究中得到证实,将说服我们进一步研究食欲素-2受体拮抗剂作为有效药物在成瘾治疗中的作用。 |
酶活实验 |
支持信息中提供了完整的检测详细信息。以 25,000 个细胞/孔的密度接种并稳定表达人食欲素 2 受体的 24 小时龄 CHO 细胞用于基于细胞的肌醇磷酸(Cisbio BioAssays,Codolet,法国)和 ERK1/2 磷酸化( Surefire, PerkinElmer, Waltham, MA, USA)在 96 孔板中进行功能测定
|
细胞实验 |
在 Krebs 测定缓冲液(8.5 mM HEPES、1.3 mM CaCl2、1.2 mM MgSO4、118 mM NaCl、4.7 mM KCl、4 mM NaHCO3、1.2 mM KH2PO4、11 mM 葡萄糖,pH 7.4)中,来自瞬时表达人的 HEK293 细胞的细胞膜OX2 受体(支持信息)与 [3H]-EMPA 一起孵育,总测定体积为 0.25 mL,最终 DMSO 浓度为 1%。使用 Tomtec 细胞收集器,室温孵育 90 分钟后,通过 GF/B 96 孔玻璃纤维板过滤,用 ddH2O 洗涤 5 × 0.25 mL,从而快速停止反应。利用 Lablogic SafeScint 进行液体闪烁,使用 microbeta 液体闪烁计数器确定和检测结合放射性。非特异性结合量定义为当拮抗剂 EMPA 以 10 μM 饱和浓度存在时持续存在的量。将膜(2 μg 蛋白质/孔)与一系列浓度的 [3H]-EMPA (0.4 nM–15 nM) 一起孵育,以进行饱和度研究。使用 Beckman LS 6000 液体闪烁计数器和 SafeScint 确定放射性配体浓度。为了进行竞争性结合,将膜(2μg蛋白质/孔)与一系列浓度的测试化合物和1.5nM的[3H]-EMPA一起孵育。
|
动物实验 |
440 adult male NMRI mice (25-30 g)
5 mg/kg and 10 mg/kg Intraperitoneal injection (Pharmacokinetic study) |
参考文献 |
|
其他信息 |
The identification of potent and selective orexin-2 receptor (OX(2)R) antagonists is described based on the modification of N-acyl 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline analogue 1, recently discovered during high throughput screening (HTS). Substitution of an acyl group in 1 with tert-Leucine (tert-Leu), and introduction of a 4-pyridylmethyl substituent onto the amino function of tert-Leu improved compound potency, selectivity, and water solubility. Thus, compound 29 is a promising tool to investigate the role of orexin-2 receptors.[1]
Orexin receptor antagonism represents a novel approach for the treatment of insomnia that directly targets sleep/wake regulation. Several such compounds have entered into clinical development, including the dual orexin receptor antagonists, suvorexant and almorexant. In this study, we have used equilibrium and kinetic binding studies with the orexin-2 (OX₂) selective antagonist radioligand, [³H]-EMPA, to profile several orexin receptor antagonists. Furthermore, selected compounds were studied in cell-based assays of inositol phosphate accumulation and ERK-1/2 phosphorylation in CHO cells stably expressing the OX2 receptor that employ different agonist incubation times (30 and 5 min, respectively). EMPA, suvorexant, almorexant and TCS-OX-29 all bind to the OX₂ receptor with moderate to high affinity (pk(I) values ≥ 7.5), whereas the primarily OX1 selective antagonists SB-334867 and SB-408124 displayed low affinity (pK(I) values ca. 6). Competition kinetic analysis showed that the compounds displayed a range of dissociation rates from very fast (TCS-OX2-29, k(off) = 0.22 min⁻¹) to very slow (almorexant, k(off) = 0.005 min⁻¹). Notably, there was a clear correlation between association rate and affinity. In the cell-based assays, fast-offset antagonists EMPA and TCS-OX2-29 displayed surmountable antagonism of orexin-A agonist activity. However, both suvorexant and particularly almorexant cause concentration-dependent depression in the maximal orexin-A response, a profile that is more evident with a shorter agonist incubation time. Analysis according to a hemi-equilibrium model suggests that antagonist dissociation is slower in a cellular system than in membrane binding; under these conditions, almorexant effectively acts as a pseudo-irreversible antagonist.[3]
|
分子式 |
C23H32CLN3O3
|
|
---|---|---|
分子量 |
433.98
|
|
精确质量 |
433.213
|
|
元素分析 |
C, 63.66; H, 7.43; Cl, 8.17; N, 9.68; O, 11.06
|
|
CAS号 |
1610882-30-8
|
|
相关CAS号 |
TCS-OX2-29; 372523-75-6
|
|
PubChem CID |
53302033
|
|
外观&性状 |
Solid powder
|
|
tPSA |
63.7
|
|
氢键供体(HBD)数目 |
2
|
|
氢键受体(HBA)数目 |
5
|
|
可旋转键数目(RBC) |
7
|
|
重原子数目 |
30
|
|
分子复杂度/Complexity |
530
|
|
定义原子立体中心数目 |
1
|
|
SMILES |
Cl.O=C(C(C(C)(C)C)NCC1C=CN=CC=1)N1CC2C=C(C(=CC=2CC1)OC)OC
|
|
InChi Key |
NHKNHFJTMINMBP-ZMBIFBSDSA-N
|
|
InChi Code |
InChI=1S/C23H31N3O3.ClH/c1-23(2,3)21(25-14-16-6-9-24-10-7-16)22(27)26-11-8-17-12-19(28-4)20(29-5)13-18(17)15-26;/h6-7,9-10,12-13,21,25H,8,11,14-15H2,1-5H3;1H/t21-;/m1./s1
|
|
化学名 |
(2S)-1-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-3,3-dimethyl-2-(pyridin-4-ylmethylamino)butan-1-one;hydrochloride
|
|
别名 |
|
|
HS Tariff Code |
2934.99.9001
|
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.3043 mL | 11.5213 mL | 23.0425 mL | |
5 mM | 0.4609 mL | 2.3043 mL | 4.6085 mL | |
10 mM | 0.2304 mL | 1.1521 mL | 2.3043 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
![]() Competition kinetics curves for [3H]-EMPA binding to OX2-expressing (HEK293) cell membranes in the presence of increasing concentrations of EMPA, TCS-OX2-29, suvorexant and almorexant.Br J Pharmacol.2014 Jan;171(2):351-63. th> |
---|
![]() Deming linear correlations between (A) kinetically derived pKDand pKIvalues derived from equilibrium competition binding.Br J Pharmacol.2014 Jan;171(2):351-63. td> |
![]() Comparison of depression of the orexin-A maximal response in (A) ERK1/2 phosphorylation and (B) inositol phosphate accumulation assays as a function of antagonist concentration.Br J Pharmacol.2014 Jan;171(2):351-63. td> |
![]() Effect of increasing concentrations of (A) EMPA, (B) TCS-OX-29, (C) suvorexant and (D) almorexant on orexin-A stimulated ERK1/2 phosphorylation in CHO-hOX2cells.Br J Pharmacol.2014 Jan;171(2):351-63. th> |
---|
![]() Effect of increasing concentrations of (A) EMPA, (B) TCS-OX-29, (C) suvorexant and (D) almorexant on orexin-A stimulated inositol phosphate accumulation in CHO-hOX2cells.Br J Pharmacol.2014 Jan;171(2):351-63. td> |
![]() Competition for [3H]–EMPA binding to OX2-expressing HEK293 cell membranes showing the displacement of increasing concentrations by test compounds. Kinetic binding profile of [3H]–EMPA binding to OX2-expressing HEK293 cell membranes.Br J Pharmacol.2014 Jan;171(2):351-63. td> |