Ceralasertib formate (AZD-6738)

别名: AZD-6738; AZD6738; 1352280-98-8; Ceralasertib formate; AKOS040748106; AZD 6738 西拉塞替
目录号: V9179 纯度: ≥98%
Ceralasertib formate (AZD6738) 是一种新型、口服生物可利用的、基于吗啉代嘧啶的新型、选择性 ATR(共济失调毛细血管扩张和 rad3 相关)激酶抑制剂,IC50 为 2.5 nM。
Ceralasertib formate (AZD-6738) CAS号: 1352280-98-8
产品类别: New1
产品仅用于科学研究,不针对患者销售
规格 价格
500mg
1g
Other Sizes

Other Forms of Ceralasertib formate (AZD-6738):

  • 西拉塞替
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
Ceralasertib formate (AZD6738) 是一种新型、有效、口服生物可利用的吗啉代嘧啶类选择性 ATR(共济失调毛细血管扩张和 rad3 相关)激酶抑制剂,IC50 为 2.5 nM。 ATR是一种丝氨酸/苏氨酸蛋白激酶,在多种癌细胞中表达上调,在DNA修复、细胞周期进程和生存中发挥关键作用;它是由 DNA 复制相关压力期间造成的 DNA 损伤激活的。 AZD6738 对非小细胞肺癌 (NSCLC) 具有潜在的抗癌活性。 AZD6738 通过阻断丝氨酸/苏氨酸蛋白激酶 CHK1 的下游磷酸化来选择性抑制 ATR 活性,从而阻止 ATR 介导的信号传导,从而抑制 DNA 损伤检查点激活、破坏 DNA 损伤修复并诱导肿瘤细胞凋亡。 AZD6738 还使肿瘤细胞对化疗(例如顺铂)和放疗敏感。
生物活性&实验参考方法
靶点
ATR ( IC50 = 1 nM ); PI3Kδ ( IC50 = 6.8 μM ); DYRK ( IC50 = 10.8 μM )
体外研究 (In Vitro)
体外活性:AZD6738 是一种口服的基于吗啉代嘧啶的选择性 ATR(共济失调毛细血管扩张和 rad3 相关)激酶抑制剂,IC50 为 1 nM。 ATR是一种丝氨酸/苏氨酸蛋白激酶,在多种癌细胞中表达上调,在DNA修复、细胞周期进程和生存中发挥关键作用;它是由 DNA 复制相关压力期间造成的 DNA 损伤激活的。 AZD6738 具有潜在的抗肿瘤活性。通过口服途径给药后,AZD6738 通过阻断丝氨酸/苏氨酸蛋白激酶 CHK1 的下游磷酸化来选择性抑制 ATR 活性,从而阻止 ATR 介导的信号传导,并导致 DNA 损伤检查点激活的抑制、DNA 损伤修复的破坏,以及诱导肿瘤细胞凋亡。在能够复制的体外模型中,开始 AZD6738 治疗后 70 小时以上,γH2AX 信号持续存在。复制叉停滞可能会破坏 DNA 双链断裂的形成和共济失调毛细血管扩张突变 (ATM) 激酶的激活。作为跨癌细胞系组的单一药物,AZD6738 具有活性。在缺乏 ATM 通路的细胞系中,AZD6738 的敏感性增强。激酶测定:AZD6738 是 ATR 激酶活性的有效抑制剂,对分离的酶的 IC50 为 0.001 μM,对细胞中 ATR 激酶依赖性 CHK1 磷酸化的 IC50 为 0.074 μM。细胞测定:AZD6738 以 30 mM 溶解在 DMSO 中,并在 DMSO 中稀释至所需的工作浓度。对于 AZD6738 剂量反应实验,所有条件和对照的培养基中最终 DMSO 浓度为 0.1%,对于 AZD6738 + 化疗活力实验为 0.05%,对于涉及 0.3 μM 和 1.0 μM 剂量 AZD6738 的所有实验为 0.025%。
体内研究 (In Vivo)
在 ATM 缺乏但 ATM 不充分的体内模型中,单独使用 AZD6738 治疗可在等效的耐受剂量下显着抑制肿瘤的活性。电离辐射 (IR) 是一种 DNA 损伤诱导剂。当AZD6738和IR一起使用时,观察到消退或抗肿瘤生长抑制活性。在肿瘤组织中,AZD6738 与持续的 γH2AX 染色增加相关。在正常肠道组织或骨髓中,AZD6738 治疗仅短暂增加 γH2AX 染色。
酶活实验
AZD6738 是 ATR 激酶活性的有效抑制剂,对分离酶的 IC50 为 0.001 μM,对依赖 ATR 激酶的细胞中 CHK1 磷酸化的 IC50 为 0.074 μM。 ATR和ATM是DNA损伤信号激酶,可磷酸化数千种底物。ATR激酶活性在受损的复制叉和切除的DNA双链断裂(DSBs)处增加。在DSBs处ATM激酶活性增加。ATM已被广泛研究,因为不表达ATM蛋白的共济失调毛细血管扩张症患者是确定的最具放射敏感性的患者。由于ATM不是必需的蛋白质,人们普遍认为ATM激酶抑制剂在临床上会有很好的耐受性。ATR已经被广泛研究,但由于发现ATR是一种必需蛋白,并且人们普遍认为ATR激酶抑制剂在临床上是有毒的,因此进展变得复杂。
细胞实验
Ceralasertib (AZD6738) 溶解至 30 mM 浓度后,在 DMSO 中稀释至适当的工作浓度。对于 Ceralasertib (AZD6738) 剂量反应实验,所有条件和对照的培养基中最终 DMSO 浓度为 0.1%;对于 Ceralasertib (AZD6738) + 化疗活力实验,为 0.05%;对于所有涉及 0.3 μM 和 1.0 μM 剂量的 Ceralasertib (AZD6738) 的实验,该比例为 0.025%[1]。
动物实验
Mice: Ceralasertib (AZD6738) is diluted 1:5 in propylene glycol after being dissolved in DMSO at a concentration of 25 mg/mL or 50 mg/mL. Ceralasertib (AZD6738) is given orally as a gavage for 14 days at a dose of 25 mg/kg (H23) or 50 mg/kg (H460). 10 mL/kg is the dosage volume.[1].
Female athymic nude (Foxn1nu) mice, 6–7 weeks old, were purchased from Harlan Laboratories. H23 (3 × 106 cells) or H460 (7 × 105 cells) were injected subcutaneously into the right hind flank in a volume of 100 μL (equal parts 1x PBS and Matrigel). Cells were tested for mycoplasma prior to inoculation in mice. Mice began receiving treatment once tumors reached approximately 220 mm3 (± 15%) for H23 or 180 mm3 (± 15%) for H460. Tumor volume was calculated as (L × W2)/2. AZD6738 was administered by oral gavage (qd × 14) at 25 mg/kg (H23) or 50 mg/kg (H460). Cisplatin was administered intraperitoneally (q7d × 2) at 3 mg/kg. The dosing volume was 10 mL/kg. Growth curves depict mean (± SEM) tumor volume over time. Mean tumor growth inhibition was calculated as TGI = (1–(Tf–T0)/(Cf–C0))*100, where Tf and T0 represent final and initial mean tumor volumes in the treatment arm, respectively, and Cf and C0 represent final and initial mean tumor volumes in the vehicle control arm, respectively. Mean tumor regression was calculated as % Regression = ((T0–Tf)/T0)*100. For H460 xenografts, the experimental endpoint was defined as the day on which any single tumor within the treatment arm reached 2000 mm3. Tumor growth delay is defined as the difference in the number of days to reach the endpoint for a given treatment arm compared to vehicle control.[1]
参考文献

[1]. The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of CDDP to resolve ATM-deficient non-small cell lung cancer in vivo.Oncotarget. 2015 Dec 29;6(42):44289-305.

[2]. Anti-tumor activity of the ATR inhibitor AZD6738 in HER2 positive breast cancer cells. Int J Cancer. 2017 Jan 1;140(1):109-119.

[3]. Synthetic lethality in chronic lymphocytic leukaemia with DNA damage response defects by targeting the ATR pathway. Lancet.2015 Feb 26;385 Suppl 1:S58.
[4]. Bridging the gap between in vitro and in vivo: Dose and schedule predictions for the ATR inhibitor AZD6738. Sci Rep.2015 Aug 27;5:13545.
其他信息
ATR and ATM are DNA damage signaling kinases that phosphorylate several thousand substrates. ATR kinase activity is increased at damaged replication forks and resected DNA double-strand breaks (DSBs). ATM kinase activity is increased at DSBs. ATM has been widely studied since ataxia telangiectasia individuals who express no ATM protein are the most radiosensitive patients identified. Since ATM is not an essential protein, it is widely believed that ATM kinase inhibitors will be well-tolerated in the clinic. ATR has been widely studied, but advances have been complicated by the finding that ATR is an essential protein and it is widely believed that ATR kinase inhibitors will be toxic in the clinic. We describe AZD6738, an orally active and bioavailable ATR kinase inhibitor. AZD6738 induces cell death and senescence in non-small cell lung cancer (NSCLC) cell lines. AZD6738 potentiates the cytotoxicity of cisplatin and gemcitabine in NSCLC cell lines with intact ATM kinase signaling, and potently synergizes with cisplatin in ATM-deficient NSCLC cells. In contrast to expectations, daily administration of AZD6738 and ATR kinase inhibition for 14 consecutive days is tolerated in mice and enhances the therapeutic efficacy of cisplatin in xenograft models. Remarkably, the combination of cisplatin and AZD6738 resolves ATM-deficient lung cancer xenografts.[1]
Ataxia telangiectasia and Rad3-related (ATR) proteins are sensors of DNA damage, which induces homologous recombination (HR)-dependent repair. ATR is a master regulator of DNA damage repair (DDR), signaling to control DNA replication, DNA repair and apoptosis. Therefore, the ATR pathway might be an attractive target for developing new drugs. This study was designed to investigate the antitumor effects of the ATR inhibitor, AZD6738 and its underlying mechanism in human breast cancer cells. Growth inhibitory effects of AZD6738 against human breast cancer cell lines were studied using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (methyl thiazolyl tetrazolium, MTT) assay. Cell cycle analysis, Western blotting, immunofluorescence and comet assays were also performed to elucidate underlying mechanisms of AZD6738 action. Anti-proliferative and DDR inhibitory effects of AZD6738 were demonstrated in human breast cancer cell lines. Among 13 cell lines, the IC50 values of nine cell lines were less than 1 μmol/L using MTT assay. Two cell lines, SK-BR-3 and BT-474, were chosen for further evaluation focused on human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells. Sensitive SK-BR-3 but not the less sensitive BT-474 breast cancer cells showed increased level of apoptosis and S phase arrest and reduced expression levels of phosphorylated check-point kinase 1 (CHK1) and other repair markers. Decreased functional CHK1 expression induced DNA damage accumulation due to HR inactivation. AZD6738 showed synergistic activity with cisplatin. Understanding the antitumor activity and mechanisms of AZD6738 in HER2-positive breast cancer cells creates the possibility for future clinical trials targeting DDR in HER2-positive breast cancer treatment.[2]
Background: DNA damage response (DDR) defects, particularly TP53 and biallelic ataxia telangiectasia mutated (ATM) aberrations, are associated with genomic instability, clonal evolution, and chemoresistance in chronic lymphocytic leukaemia (CLL). Therapies capable of providing long-term disease control in CLL patients with DDR defects are lacking. Using AZD6738, a novel ATR inhibitor, we investigated ATR pathway inhibition as a synthetically lethal strategy for targeting CLL cells with these defects. Methods: The effect of AZD6738 was assessed by western blotting and immunofluorescence of key DDR proteins. Cytotoxicity was assessed by CellTiter-Gloluminescence assay (Promega, Madison, WI, USA) and by propidium iodide exclusion. Primary CLL cells with biallelic TP53 or ATM inactivation were xenotransplanted into NOD/Shi-scid/IL-2Rγ mice. After treatment with AZD6738 or vehicle, tumour load was measured by flow cytometric analysis of infiltrated spleens, and subclonal composition by fluorescence in-situ hybridisation for 17p(TP53) or 11q(ATM) deletion. Findings: AZD6738 provided potent and specific inhibition of ATR signalling with compensatory activation of ATM/p53 pathway in cycling CLL cells in the presence of genotoxic stress. In p53 or ATM defective cells, AZD6738 treatment resulted in replication fork stalls and accumulation of unrepaired DNA damage, as evidenced by γH2AX and 53BP1 foci formation, which was carried through into mitosis, resulting in cell death by mitotic catastrophe. AZD6738 displayed selective cytotoxicity towards ATM or p53 deficient CLL cells, and was highly synergistic in combination with cytotoxic chemotherapy. This finding was confirmed in primary xenograft models of DDR-defective CLL, where treatment with AZD6738 resulted in decreased tumour load and selective reduction of CLL subclones with ATM or TP53 alterations. Interpretation: We have provided mechanistic insight and demonstrated in-vitro and in-vivo efficacy of a novel therapeutic approach that specifically targets p53-null or ATM-null CLL cells. Such an approach can potentially help to avert clonal evolution, a major cause of therapeutic resistance and disease relapse.[3]
Understanding the therapeutic effect of drug dose and scheduling is critical to inform the design and implementation of clinical trials. The increasing complexity of both mono, and particularly combination therapies presents a substantial challenge in the clinical stages of drug development for oncology. Using a systems pharmacology approach, we have extended an existing PK-PD model of tumor growth with a mechanistic model of the cell cycle, enabling simulation of mono and combination treatment with the ATR inhibitor AZD6738 and ionizing radiation. Using AZD6738, we have developed multi-parametric cell based assays measuring DNA damage and cell cycle transition, providing quantitative data suitable for model calibration. Our in vitro calibrated cell cycle model is predictive of tumor growth observed in in vivo mouse xenograft studies. The model is being used for phase I clinical trial designs for AZD6738, with the aim of improving patient care through quantitative dose and scheduling prediction.[4]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
精确质量
458.1736245
元素分析
C, 55.01; H, 5.72; N, 18.33; O, 13.96; S, 6.99
CAS号
1352280-98-8
相关CAS号
1352226-88-0;1352280-98-8 (formate);1352226-97-1 (racemic);
PubChem CID
154701782
外观&性状
Typically exists as solid at room temperature
tPSA
154Ų
InChi Key
JOKLXYXIZOXQHY-FQAMYIAXSA-N
InChi Code
InChI=1S/C20H24N6O2S.CH2O2/c1-13-12-28-10-9-26(13)17-11-16(20(5-6-20)29(2,21)27)24-19(25-17)15-4-8-23-18-14(15)3-7-22-182-1-3/h3-4,7-8,11,13,21H,5-6,9-10,12H2,1-2H3,(H,22,23)1H,(H,2,3)/t13-,29-/m1./s1
化学名
4-[4-[1-[[S(R)]-S-Methylsulfonimidoyl]cyclopropyl]-6-[(3R)-3-methyl-4-morpholinyl]-2-pyrimidinyl]-1H-pyrrolo[2,3-b]pyridine, formic acid
别名
AZD-6738; AZD6738; 1352280-98-8; Ceralasertib formate; AKOS040748106; AZD 6738
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
溶解度 (体内实验)
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。

注射用配方
(IP/IV/IM/SC等)
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO 50 μL Tween 80 850 μL Saline)
*生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。
注射用配方 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO 400 μL PEG300 50 μL Tween 80 450 μL Saline)
注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO 900 μL Corn oil)
示例: 注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。
View More

注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO 900 μL (20% SBE-β-CD in Saline)]
*20% SBE-β-CD in Saline的制备(4°C,储存1周):将2g SBE-β-CD (磺丁基-β-环糊精) 溶解于10mL生理盐水中,得到澄清溶液。
注射用配方 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (如: 500 μL 2-Hydroxypropyl-β-cyclodextrin (羟丙基环胡精) 500 μL Saline)
注射用配方 6: DMSO : PEG300 : Castor oil : Saline = 5 : 10 : 20 : 65 (如: 50 μL DMSO 100 μL PEG300 200 μL Castor oil 650 μL Saline)
注射用配方 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (如: 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
注射用配方 8: 溶解于Cremophor/Ethanol (50 : 50), 然后用生理盐水稀释。
注射用配方 9: EtOH : Corn oil = 10 : 90 (如: 100 μL EtOH 900 μL Corn oil)
注射用配方 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL EtOH 400 μL PEG300 50 μL Tween 80 450 μL Saline)


口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠)
口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素)
示例: 口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。
View More

口服配方 3: 溶解于 PEG400 (聚乙二醇400)
口服配方 4: 悬浮于0.2% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 5: 溶解于0.25% Tween 80 and 0.5% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 6: 做成粉末与食物混合


注意: 以上为较为常见方法,仅供参考, InvivoChem并未独立验证这些配方的准确性。具体溶剂的选择首先应参照文献已报道溶解方法、配方或剂型,对于某些尚未有文献报道溶解方法的化合物,需通过前期实验来确定(建议先取少量样品进行尝试),包括产品的溶解情况、梯度设置、动物的耐受性等。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT04564027 Active
Recruiting
Drug: Ceralasertib Advanced Solid Tumours AstraZeneca December 1, 2020 Phase 2
NCT03328273 Active
Recruiting
Drug: Ceralasertib
Drug: Acalabrutinib
Chronic Lymphocytic Leukemia Acerta Pharma BV January 31, 2018 Phase 1
NCT05061134 Active
Recruiting
Drug: Ceralasertib
Biological: Durvalumab
Melanoma AstraZeneca August 11, 2022 Phase 2
NCT05469919 Active
Recruiting
Drug: Ceralasertib Advanced Solid Malignancies AstraZeneca June 9, 2022 Phase 1
NCT05514132 Active
Recruiting
Drug: Ceralasertib
Drug: Durvalumab
Advanced Solid Tumours AstraZeneca September 23, 2022 Phase 1
相关产品
联系我们