Masitinib Mesylate

别名: Masitinib mesilate; Masitinib Mesylate Salt; 1048007-93-7; Masitinib (mesylate); Masivet; Masitinib Mesylate 4-[(4-甲基-1-哌嗪基)甲基]-N-[4-甲基-3-[[4-(3-吡啶基)-2-噻唑基]氨基]苯基]-甲基磺酰基苯胺;马赛替尼;马赛替尼甲磺酸盐;甲磺酸马赛替尼
目录号: V19021 纯度: ≥98%
甲磺酸马赛替尼,马赛替尼的甲磺酸盐 (AB-1010; AB1010) 是一种口服生物可利用的、选择性的、多靶点的 Kit 和 PDGFRα/β 酪氨酸激酶抑制剂,IC50 为 200 nM 和 540 nM/800 nM,显示出弱抑制作用到 ABL 和 c-Fms。
Masitinib Mesylate CAS号: 1048007-93-7
产品类别: New1
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
5mg
10mg
50mg
100mg
Other Sizes

Other Forms of Masitinib Mesylate:

  • 马赛替尼
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
产品描述
甲磺酸马赛替尼,马赛替尼的甲磺酸盐 (AB-1010; AB1010) 是一种口服生物可利用的选择性多靶点酪氨酸激酶抑制剂,适用于 Kit 和 PDGFRα/β,IC50 为 200 nM 和 540 nM/800 nM,它显示对 ABL 和 c-Fms 的抑制较弱。马赛替尼选择性结合并抑制野生型和突变型干细胞因子受体(c-Kit;SCFR); PDGFR; FGFR3;以及,在较小程度上,FAK。因此,过度表达这些 RTK 的癌细胞类型的肿瘤细胞增殖可能会受到抑制。
生物活性&实验参考方法
靶点
Kit (IC50 = 200 nM); Lyn B (IC50 = 510 nM); PDGFRα (IC50 = 540 nM); PDGFRβ (IC50 = 800 nM); Abl1 (IC50 = 1.20 μM)
体外研究 (In Vitro)
在剂量 ≤500 nM 时,马沙替尼竞争性抑制 ATP。此外,马赛替尼强烈抑制细胞内激酶 Lyn、重组 PDGFR,并在较小程度上抑制成纤维细胞生长因子受体 3。另一方面,马赛替尼仅轻微抑制 c-Fms 和 Abl。与伊马替尼相比,马替替尼更有效地抑制骨髓肥大细胞迁移、细胞因子生成和脱颗粒。在表达人野生型 Kit 的 Ba/F3 细胞中,马赛替尼抑制 SCF(干细胞因子)诱导的细胞增殖的 IC50 为 150 nM,而抑制 IL-3 刺激的增殖的 IC50 大约 >10 μM。马赛替尼的 IC50 为 300 nM,抑制表达 PDGFRα 的 Ba/F3 细胞中的 PDGFRα 酪氨酸磷酸化和 PDGF-BB 刺激的增殖。此外,在 BMMC 和肥大细胞瘤细胞系中,米赛替尼可防止 SCF 刺激的人 Kit 酪氨酸磷酸化。 masatidinib 抑制 Ba/F3 细胞中的 Kit 功能获得突变体,例如 Δ27 鼠突变体和 V559D 突变体,IC50 分别为 3 nM 和 5 nM。 Mastitinib 抑制肥大细胞瘤细胞系(如 HMC-1α155 和 FMA3)的细胞生长,其 IC50 分别为 10 和 30 nM [1]。两种新的 ISS 细胞系显示出生长和 PDGFR 磷酸化,表明马赛替尼对原发性和转移性 ISS 细胞系具有疗效,并有助于 ISS 临床护理 [2]。
体内研究 (In Vivo)
在表达 Δ27 的 Ba/F3 肿瘤模型中,甲磺酸马赛替尼 (30 mg/kg) 可减少肿瘤生长并延长中位生存时间,且不会引起遗传毒性或心脏毒性 [1]。与安慰剂相比,甲磺酸马赛替尼(12.5 mg/kg/d,口服)可延长肿瘤生长前的时间[3]。 与安慰剂相比,马赛替尼(12.5 mg/kg/d PO)可增加狗的总体 TTP(肿瘤进展时间)。马赛替尼/吉西他滨组合在体外显示出对吉西他滨难治性细胞系 Mia Paca2 和 Panc1 增殖的协同作用,对 NogCID 小鼠中的 Mia Paca-2 胰腺肿瘤的增殖也有较小程度的协同作用。
与安慰剂相比,马西替尼的总TTP从75天增加到118天(P=0.038)。当masitinib用作一线治疗时,这种效果更为明显,中位TTP从75天增加到253天(P=0.001),无论肿瘤是表达突变体(83对未达到[P=.009])还是野生型KIT(66对253[P=.008])。马西替尼通常耐受良好,轻度(I级)或中度(II级)腹泻或呕吐是最常见的不良事件。 结论和临床重要性:马西替尼在延缓复发性或不可切除的II级或III级非转移性MCT犬的肿瘤进展方面是安全有效的[3]。
酶活实验
将 96 孔微量滴定板用 0.25 mg/mL 聚(Glu,Tyr 4:1)包被一整夜。然后用 250 µL 洗涤缓冲液(10 mM 磷酸盐缓冲盐水 [pH 7.4] 和 0.05% Tween 20)冲洗两次,并在室温下干燥两小时。测定在室温下进行,最终体积为 50 µL 激酶缓冲液(10 mM MgCl2、1 mM MnCl2、1 mM 原钒酸钠、20 mM HEPES ,pH 7.8),含有重组酶和 ATP,每种酶的浓度至少是 Km 的两倍,以保证线性反应速率。添加酶以启动反应,并通过每 5mol/Lurea 混合物添加一反应体积 (50 μL) 的 100 mM EDTA 来停止反应。将板洗涤三次,然后与四甲基联苯胺和 1:30,000 辣根过氧化物酶缀合的抗磷酸酪氨酸单克隆抗体一起孵育。使用分光光度法在 450 nm 处测量最终反应产物。
重组蛋白激酶的体外检测[1]
补充方法中提供了重组人KIT细胞内结构域和其他蛋白激酶(包括Lyn、血小板衍生生长因子受体β、表皮生长因子受体、成纤维细胞生长因子受体1、Src、HCK、PYK、FES、Btk、Bmx、c-Ret、c-Fms、Syk和c-Met)产生的全部细节(见支持信息;方法S1)。用Proqinase对ABL1、Akt1、蛋白激酶C-α、胰岛素样生长因子受体1和Pim1进行了实验。所有其他重组蛋白激酶都是在内部使用酶联免疫测定法进行的;补充方法中提供了实验细节(见支持信息;方法S1)。
细胞实验
将微量滴定板在 37°C 下以 104 细胞/孔接种到 100 μL 含有 10% 胎牛血清的 RPMI 1640 培养基中,以进行 Ba/F3 细胞增殖测定。向其中添加或不添加 250 ng/mL 的鼠 SCF 或来自 X63-IL-3 细胞的 0.1% 条件培养基。从产生 SCF 的 CHO 细胞的条件培养基中纯化得到的鼠 SCF 可以激活 Kit。将马赛替尼生长的细胞与 WST-1 试剂(10 μL/孔)一起在 37°C 下孵育 48 小时,持续三小时。使用扫描多孔分光光度计,甲臜染料在 450 nm 处的吸光度表明其形成量。分光光度计的背景对照是不含细胞的空白孔。
如Royer等人之前所述(见支持信息;方法S1),对通过长期培养从正常脐带血纯化的CD34+祖细胞产生的CBMC进行了评估,评估了masitinibb和伊马替尼对人类肥大细胞脱颗粒反应和细胞因子产生(TNF-α释放)的影响。收获培养的细胞,在完全IMDM培养基中洗涤,并在不同浓度的masitinib或伊马替尼中孵育1小时。通过用1µg/ml的山羊抗人IgE刺激CBMC 30分钟或4小时,分别进行β-己糖胺酶释放和TNF-α释放的测定。在上清液和超声处理的细胞颗粒中测量β-己糖胺酶,并计算其净释放量。对于TNF-α测定,通过离心收集无细胞上清液,并在-80°C下冷冻,直至根据制造商的说明使用特定的ELISA试剂盒测定介质含量。所有测定均重复进行,每个孔重复计数两次。结果以β-己糖胺酶释放和TNF-α释放的抑制百分比表示,相对于受刺激的未经治疗的CBMC(即100%的刺激)。
血小板源性生长因子受体(PDGFR)的失调可能在猫注射部位肉瘤(ISS)细胞的生长和存活中发挥作用Masitinib是一种酪氨酸激酶抑制剂,被批准用于治疗犬肥大细胞肿瘤,对PDGFR信号通路具有高度选择性,可能为这种疾病提供一种新的治疗方法。研究了masitinib对两种新型ISS细胞系的生长、凋亡和PDGFR信号传导的体外影响。在来源于原发性ISS肿瘤(JB)和相应的经组织学证实的ISS肺转移(JBLM)的细胞系中,通过蛋白质印迹证实了PDGFR的表达。马西替尼抑制了两种细胞系的细胞生长和PDGFR磷酸化。与调节配体诱导的PDGFR自磷酸化相比,抑制生长需要更高的药物浓度。这些体外数据表明,masitinib对原发性和转移性ISS细胞系都显示出活性,可能有助于ISS的临床管理[2]。
动物实验
Dissolved in DMSO;
30 mg/kg (i.p.) or 10, 30, or 45 mg/kg (p.o.).; i.p. or oral gavage
Female MBRI Nu/Nu mice bearing a/F3 Δ27 tumour model
At 7 weeks old, male Nog-SCID mice are housed in a pathogen-free environment with filtered water and food available at all times. They experience a 12-hour light/12-hour dark cycle. According to the above description, Mia Paca-2 cells are cultured. Mice are given an injection into the right flank at day 0 (D0) containing 107 Mia Paca-2 cells in 200 µL PBS. After a tumor reaches the target size of approximately 200 mm3, it is allowed to grow for 1.5 to 4 weeks. In order to ensure that the mean body weight and tumor volume of each treatment group are well matched, animals are divided into four groups by day 28 (n = 7–8). The animals receive treatment for a maximum of four weeks, following which they are sacrificed. The treatments were as follows: a) daily gavage with 100 mg/kg masitinib; b) intraperitoneal (i.p.) injection of 50 mg/kg gemcitabine twice a week; c) daily gavage with 100 mg/kg masitinib; or d) a combination of daily gavage with 100 mg/kg masitinib and i.p. injection of 50 mg/kg gemcitabine twice a week. Callipers are used to measure the size of tumors, and the formula volume=(length × width2)/2 is used to estimate the tumor volume. (100) × (median tumor volume of treated group)/(median tumor volume of control group) is the formula for the tumor growth inhibition ratio.
In vivo assays with Ba/F3 Δ27 tumour model [1]
Female MBRI Nu/Nu mice (7 weeks old) were housed under specific pathogen-free conditions at 20±1°C with a 12 hours light/12 hours dark cycle and ad libitum access to food and filtered water. The mice were allowed to acclimatise to the study conditions for 10 to 20 days prior to experiments. The Δ27-expressing Ba/F3 cells were grown in RPMI 1640 medium supplemented with glutamax-1 and 10% foetal bovine serum at 37°C in a humidified atmosphere containing 5% CO2. The cells were centrifuged and resuspended at 5×106 or 7.5×106 cells/ml in phosphate-buffered saline. Mice were treated with 5 Gy of gamma radiation and after 24 hours they were injected in the right flank with 1.5×106 Δ27 Ba/F3 cells. When tumour growth had reached the desired size, mice were allocated into treatment groups ensuring that there was no statistical difference between each group's mean body weight and tumour volume. For all animals, body weight was measured on the day of injection and every 5 days thereafter, with the tumour's size measured via callipers every 5 days during the treatment period for estimation of tumour volume. During the predose period and for 2 weeks post-treatment, the animals were checked for mortality or signs of morbidity once a day, increasing to twice a day checks during the treatment period.
Background: Activation of the KIT receptor tyrosine kinase is associated with the development of canine mast cell tumors (MCT). [3]
Hypothesis/objective: To evaluate the efficacy of masitinib, a potent and selective inhibitor of KIT, in the treatment of canine MCT. [3]
Animals: Two hundred and two client-owned dogs with nonmetastatic recurrent or nonresectable grade II or III MCT. [3]
Methods: Double-blind, randomized, placebo-controlled phase III clinical trial. Dogs were administered masitinib (12.5 mg/kg/d PO) or a placebo. Time-to-tumor progression (TTP), overall survival, objective response at 6 months, and toxicity were assessed. [3]
毒性/毒理 (Toxicokinetics/TK)
Furthermore, in an intraperitoneal model, masitinib significantly enhanced survival with no indication of general toxicity, as indicated by a lack of weight loss at the administered doses. [1]
参考文献

[1]. Masitinib (AB1010), a Potent and Selective Tyrosine Kinase Inhibitor Targeting KIT. PLoS One, 2009, 4(9), e7258.

[2]. Masitinib demonstrates anti-proliferative and pro-apoptotic activity in primary and metastatic feline injection-site sarcoma cells. Vet Comp Oncol, 2011, doi: 10.1111/j.1476-5829.2011.00291.x.

[3]. Masitinib is safe and effective for the treatment of canine mast cell tumors. J Vet Intern Med, 2008, 22(6), 1301-1309.

[4]. Masitinib (AB1010), from canine tumor model to human clinical development: where we are? Crit Rev Oncol Hematol. 2014 Jul;91(1):98-111.

其他信息
Masitinib Mesylate is the orally bioavailable mesylate salt of masatinib, a multi-targeted protein tyrosine kinase inhibitor with potential antineoplastic activity. Masitinib selectively binds to and inhibits both the wild-type and mutated forms of the stem cell factor receptor (c-Kit; SCFR); platelet-derived growth factor receptor (PDGFR); fibroblast growth factor receptor 3 (FGFR3); and, to a lesser extent, focal adhesion kinase (FAK). As a consequence, tumor cell proliferation may be inhibited in cancer cell types that overexpress these receptor tyrosine kinases (RTKs).
Drug Indication
Treatment of amyotrophic lateral sclerosis.
Treatment of mastocytosis
Treatment of non resectable locally advanced or metastatic pancreatic cancer
Treatment of unresectable and/or metastatic malignant gastrointestinal stromal tumour (GIST)
Treatment of non-resectable dog mast-cell tumours (grade 2 or 3) with confirmed mutated c-KIT tyrosine-kinase receptor.
Treatment of amyotrophic lateral sclerosis
Treatment of mastocytosis
Treatment of gastro-intestinal stromal tumours.
Masitinib is a member of the class of benzamides that is the carboxamide resulting from the formal condensation of the carboxy group of 4-[(4-methylpiperazin-1-yl)methyl]benzoic acid with the primary amino group of 4-methyl-N(3)-[4-(pyridin-3-yl)-1,3-thiazol-2-yl]benzene-1,3-diamine. It is a highly selective oral tyrosine kinase inhibitor. It has a role as a tyrosine kinase inhibitor, an antineoplastic agent and an antirheumatic drug. It is a N-alkylpiperazine, a member of 1,3-thiazoles, a member of pyridines and a member of benzamides.
Masitinib is a tyrosine-kinase inhibitor used in the treatment of mast cell tumors in dogs. It has been available in Europe since 2009, under the brand name Masivet. In the USA it is distributed under the name Kinavet and has been available for veterinaries since 2011.
Masitinib is a multi-targeted protein tyrosine kinase inhibitor, with potential antineoplastic activity. Upon administration, masitinib selectively binds to and inhibits both the wild-type and mutated forms of the stem cell factor receptor (c-Kit; SCFR); platelet-derived growth factor receptor (PDGFR); fibroblast growth factor receptor 3 (FGFR3); and, to a lesser extent, focal adhesion kinase (FAK). As a consequence, tumor cell proliferation may be inhibited in cancer cell types that overexpress these receptor tyrosine kinases (RTKs).
See also: Masitinib Mesylate (annotation moved to).
Drug Indication
Treatment of amyotrophic lateral sclerosis.
Treatment of mastocytosis
Treatment of non resectable locally advanced or metastatic pancreatic cancer
Treatment of unresectable and/or metastatic malignant gastrointestinal stromal tumour (GIST).
Background[1]
The stem cell factor receptor, KIT, is a target for the treatment of cancer, mastocytosis, and inflammatory diseases. Here, we characterise the in vitro and in vivo profiles of masitinib (AB1010), a novel phenylaminothiazole-type tyrosine kinase inhibitor that targets KIT. [1]
Methodology/Principal Findings[1]
In vitro, masitinib had greater activity and selectivity against KIT than imatinib, inhibiting recombinant human wild-type KIT with an half inhibitory concentration (IC50) of 200±40 nM and blocking stem cell factor-induced proliferation and KIT tyrosine phosphorylation with an IC50 of 150±80 nM in Ba/F3 cells expressing human or mouse wild-type KIT. Masitinib also potently inhibited recombinant PDGFR and the intracellular kinase Lyn, and to a lesser extent, fibroblast growth factor receptor 3. In contrast, masitinib demonstrated weak inhibition of ABL and c-Fms and was inactive against a variety of other tyrosine and serine/threonine kinases. This highly selective nature of masitinib suggests that it will exhibit a better safety profile than other tyrosine kinase inhibitors; indeed, masitinib-induced cardiotoxicity or genotoxicity has not been observed in animal studies. Molecular modelling and kinetic analysis suggest a different mode of binding than imatinib, and masitinib more strongly inhibited degranulation, cytokine production, and bone marrow mast cell migration than imatinib. Furthermore, masitinib potently inhibited human and murine KIT with activating mutations in the juxtamembrane domain. In vivo, masitinib blocked tumour growth in mice with subcutaneous grafts of Ba/F3 cells expressing a juxtamembrane KIT mutant. [1]
Conclusions[1]
Masitinib is a potent and selective tyrosine kinase inhibitor targeting KIT that is active, orally bioavailable in vivo, and has low toxicity.[1]
Masitinib mesylate (AB1010) is a novel potent and selective tyrosine kinase inhibitor, targeting mainly wild-type and mutated c-Kit receptor (c-KitR), Platelet Derived Growth Factor Receptor-alfa/beta (PDGFRa/ß), Lymphocyte-specific kinase (Lck), Lck/Yes-related protein (LYn), Fibroblast Growth Factor Receptor 3 (FGFR3) and Focal Adhesion Kinase (FAK). It is the first anticancer therapy approved in veterinary medicine for the treatment of unresectable canine mast cell tumors (CMCTs), harboring activating c-KitR mutations, at dose of 12.5mg/kg once daily. Considering its anti-proliferative action, principally given by inhibiting the MCs c-KitR anti-angiogenic pathway that leads cancer progression, and its role as chemosensitizer, masitinib is under clinical investigation in several human malignancies (Gastro-Intestinal Stromal Tumors, acute myeloid leukemia, systemic mastocytosis, pancreatic cancer, multiple myeloma, non-small cell lung cancer, melanoma, ovarian and prostate cancer), which are characterized by similar canine c-KIT proto-oncogene mutations. Here, we analyze masitinib structure activity, its pharmacokinetics compared to imatinib, the c-KitR pathway referring to the most frequent c-KIT mutations sensitive or resistant to this novel drug compared to imatinib, and masitinib safety profile. We, also, explore preclinical and clinical (completed and ongoing) trials with the aim to emphasize as this recent anti-angiogenic therapy, at first approved in CMCTs and, currently in development for the treatment of several human neoplasms, could be represent a milestone in translational oncology, in which the murine experimental model of cancer research could be integrated by canine spontaneous tumor model. [4]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C29H34N6O4S2
分子量
594.74
精确质量
594.208
元素分析
C, 58.57; H, 5.76; N, 14.13; O, 10.76; S, 10.78
CAS号
1048007-93-7
相关CAS号
Masitinib;790299-79-5
PubChem CID
25024769
外观&性状
White to yellow solid powder
LogP
5.212
tPSA
167.61
氢键供体(HBD)数目
3
氢键受体(HBA)数目
10
可旋转键数目(RBC)
7
重原子数目
41
分子复杂度/Complexity
788
定义原子立体中心数目
0
InChi Key
TXCWBWKVIZGWEQ-UHFFFAOYSA-N
InChi Code
InChI=1S/C28H30N6OS.CH4O3S/c1-20-5-10-24(16-25(20)31-28-32-26(19-36-28)23-4-3-11-29-17-23)30-27(35)22-8-6-21(7-9-22)18-34-14-12-33(2)13-15-34;1-5(2,3)4/h3-11,16-17,19H,12-15,18H2,1-2H3,(H,30,35)(H,31,32);1H3,(H,2,3,4)
化学名
methanesulfonic acid;4-[(4-methylpiperazin-1-yl)methyl]-N-[4-methyl-3-[(4-pyridin-3-yl-1,3-thiazol-2-yl)amino]phenyl]benzamide
别名
Masitinib mesilate; Masitinib Mesylate Salt; 1048007-93-7; Masitinib (mesylate); Masivet; Masitinib Mesylate
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
1M HCl : 100 mg/mL (~168.14 mM)
DMSO : ≥ 30 mg/mL (~50.44 mM)
溶解度 (体内实验)
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。

注射用配方
(IP/IV/IM/SC等)
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO 50 μL Tween 80 850 μL Saline)
*生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。
注射用配方 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO 400 μL PEG300 50 μL Tween 80 450 μL Saline)
注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO 900 μL Corn oil)
示例: 注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。
View More

注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO 900 μL (20% SBE-β-CD in Saline)]
*20% SBE-β-CD in Saline的制备(4°C,储存1周):将2g SBE-β-CD (磺丁基-β-环糊精) 溶解于10mL生理盐水中,得到澄清溶液。
注射用配方 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (如: 500 μL 2-Hydroxypropyl-β-cyclodextrin (羟丙基环胡精) 500 μL Saline)
注射用配方 6: DMSO : PEG300 : Castor oil : Saline = 5 : 10 : 20 : 65 (如: 50 μL DMSO 100 μL PEG300 200 μL Castor oil 650 μL Saline)
注射用配方 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (如: 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
注射用配方 8: 溶解于Cremophor/Ethanol (50 : 50), 然后用生理盐水稀释。
注射用配方 9: EtOH : Corn oil = 10 : 90 (如: 100 μL EtOH 900 μL Corn oil)
注射用配方 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL EtOH 400 μL PEG300 50 μL Tween 80 450 μL Saline)


口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠)
口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素)
示例: 口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。
View More

口服配方 3: 溶解于 PEG400 (聚乙二醇400)
口服配方 4: 悬浮于0.2% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 5: 溶解于0.25% Tween 80 and 0.5% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 6: 做成粉末与食物混合


注意: 以上为较为常见方法,仅供参考, InvivoChem并未独立验证这些配方的准确性。具体溶剂的选择首先应参照文献已报道溶解方法、配方或剂型,对于某些尚未有文献报道溶解方法的化合物,需通过前期实验来确定(建议先取少量样品进行尝试),包括产品的溶解情况、梯度设置、动物的耐受性等。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 1.6814 mL 8.4070 mL 16.8141 mL
5 mM 0.3363 mL 1.6814 mL 3.3628 mL
10 mM 0.1681 mL 0.8407 mL 1.6814 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT05047783 Recruiting Drug: Masitinib Mesylate
Drug: Placebo
Covid19
SARS-CoV2 Infection
AB Science November 23, 2021 Phase 2
NCT05441488 Recruiting Drug: Placebo
Drug: Masitinib (4.5)
Progressive Multiple Sclerosis AB Science June 28, 2022 Phase 3
NCT05564169 Not yet recruiting Drug: Placebo
Drug: Masitinib (4.5)
Alzheimer Disease AB Science January 2024 Phase 3
NCT05449444 Recruiting Drug: Masitinib 4.5 mg/kg/day Mast Cell Activation Syndrome AB Science July 1, 2022 Phase 2
NCT04622865 Recruiting Drug: Masitinib
Drug: Isoquercetin
SARS-CoV
COVID-19
AB Science June 1, 2020 Phase 2
生物数据图片
  • [1].Masitinib inhibition of KIT in intact cells.
    (A) Effect of masitinib and imatinib on SCF and IL-3-stimulated cell proliferation. Ba/F3 cells expressing wild-type (WT) human (hKIT) were incubated for 48 hours with 0.1% conditioned medium from X63-IL-3 cells (IL-3) (filled symbols) or 250 ng/ml murine SCF in the presence of various concentrations of masitinib and imatinib. Cell proliferation was assessed by WST-1 colorimetric assay. (B) Induction of apoptosis by masitinib in Ba/F3 cells expressing wild-type human KIT. Cells were incubated for 24 hours with stem cell factor (SCF) or 0.1% conditioned medium from X63-IL-3 cells (IL-3) in the presence of various concentrations of masitinib. Apoptosis was assessed via Annexin V-phycoerythrin (PE) and 7-amino-actinomycin D (7-AAD) staining, followed by fluorescence-activated cell sorting. A second dataset was acquired for an incubation of 48 hours to verify completeness of the apoptosis process. (C) Effect of masitinib and imatinib on KIT tyrosine phosphorylation in Ba/F3 cells (upper panels) and phosphorylation of the downstream targets AKT and ERK (lower panels). Ba/F3 cells expressing wild-type human KIT (hKIT WT) were incubated for 5 minutes with (+) or without (-) 250 ng/ml murine SCF in the presence of various concentrations of masitinib and imatinib. Tyrosine phosphorylation of KIT, AKT and ERK, were assessed by immunoprecipitation (IP) with the relevant antibody, followed by western blotting (Blot) with anti-phosphotyrosine (pTyr) or anti-KIT molecular weight. Results are representative of at least three independent experiments. MW = molecular weight markers. (D) Comparison of masitinib's and imatinib's ability to inhibit the FcεRI-mediated degranulation and cytokine production in cord blood derived mast cells (CBMC). Left: effect on the release of β-hexosaminidase by IgE-anti IgE activated CBMC after 30 minutes of stimulation. Right: effect on cytokine production by IgE-anti IgE-activated CBMC after 4 hours of simulation via ELISA assessment of TNF-α release. (E) The effect of masitinib and imatinib on the migration of murine BMMCs in response to rmSCF stimulation.
  • Effect of masitinib on human and mouse KIT mutants.
    Effect of masitinib on the proliferation of Ba/F3 cells expressing wild-type (WT) or mutant human (hKIT) (Fig. 3A) or murine (Fig. 3C) KIT (mKIT). Assessment of proliferation was as described for Fig. 2A. Effect of masitinib on tyrosine phosphorylation of KIT mutants in Ba/F3 cells expressing the human V559D mutant (hKIT V559D) (Fig. 3B) or murine Δ27 mutant (mKIT Δ27) (Fig. 3D). KIT tyrosine phosphorylation was assessed as described in Fig. 2B. IP = immunoprecipitation; Blot = western blot; MW = molecular weight markers.
  • Effect of masitinib on cell proliferation and KIT tyrosine phosphorylation in mastocytoma cell-lines and BMMC.
    (A) Effect of masitinib on the proliferation of human (HMC1, HMC-1α155) (filled symbols) and murine (P815, FMA3) mastocytoma cell lines harboring KIT mutants. Cells were incubated for 2 days with the indicated concentrations of masitinib. (B) western blotting analysis of HMC-1α155 tyrosine phosphorylation. (C) Effect of masitinib in the proliferation of BMMCs. BMMCs were incubated for 2 days with 250 ng/ml of stem cell factor (SCF) or 0.1% conditioned medium from X63-IL-3 cells (IL-3) with the indicated concentrations of masitinib. (D) Western blotting analysis of BMMC tyrosine phosphorylation. Cell proliferation was assessed by WST-1 colorimetric assay. Tyrosine phosphorylation of the KIT protein from sensitive cell types in (A) and (C) was analysed by immunoprecipitation (IP) and examined by western blotting (Blot) with antibodies to phosphotyrosine (anti-pTyr) or KIT (anti-Kit). MW = molecular weight.
相关产品
联系我们