Omadacycline

别名: PTK-0796; PTK 0796; Omadacycline; Amadacycline; 389139-89-3; nuzyra; PTK0796; Nuzyra;Amadacyclin
目录号: V3867 纯度: ≥98%
Omadacycline(PTK-0796;PTK0796;商品名:Nuzyra)是一种正在开发的新型氨甲基四环素抗生素,于 2018 年晚些时候被批准用于口服和静脉(IV)给药,用于治疗社区获得性细菌感染,例如急性细菌性皮肤和皮肤病结构感染(ABSSSI)、社区获得性细菌性肺炎(CABP)和尿路感染(UTI)。
Omadacycline CAS号: 389139-89-3
产品类别: Bacterial
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
1mg
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of Omadacycline:

  • 奥马环素苯甲磺酸盐
  • 奥马环素盐酸盐
  • Omadacycline-d9 (PTK 0796-d9; Amadacycline-d9)
  • 奥马环素甲磺酸盐
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
顾客使用InvivoChem 产品奥玛环素发表1篇科研文献
纯度/质量控制文件

纯度: ≥98%

纯度: ≥98%

产品描述
Omadacycline(PTK-0796;PTK0796;商品名:Nuzyra)是一种正在开发的新型氨甲基四环素抗生素,于 2018 年晚些时候被批准用于口服和静脉 (IV) 给药,用于治疗社区获得性细菌感染,例如急性细菌性皮肤病皮肤结构感染 (ABSSSI)、社区获得性细菌性肺炎 (CABP) 和尿路感染 (UTI)。 2018年10月,Omadacycline被FDA批准用于治疗社区获得性细菌性肺炎和急性细菌性皮肤和皮肤结构感染。在体外,omadacycline 对革兰氏阳性和革兰氏阴性需氧菌、厌氧菌和非典型病原体(包括军团菌和衣原体属)具有活性。奥马达环素提供每日一次的口服和静脉注射给药方式,其临床耐受性和安全性与当前用于治疗严重社区获得性感染的抗生素相比具有优势,而在这些感染中,耐药性已大大降低了有效性。在针对复杂皮肤和皮肤结构感染(包括 MRSA 感染患者)的研究中,omadacycline 表现出与利奈唑胺相当的疗效和耐受性。正在进行和计划中的临床研究正在评估 omadacycline 作为治疗严重社区获得性细菌感染的单一疗法,包括急性细菌性皮肤和皮肤结构感染 (ABSSSI) 和社区获得性细菌性肺炎 (CABP)。本综述概述了奥马环素的发现、微生物学、非临床数据以及可用的临床安全性和有效性数据,并参考了其他当代四环素衍生抗生素。
生物活性&实验参考方法
靶点
Tetracycline
体外研究 (In Vitro)
体外活性:Omadacycline 是一种新型氨甲基四环素抗生素,正在开发用于口服和静脉 (IV) 给药,用于治疗社区获得性细菌感染,例如急性细菌性皮肤和皮肤结构感染 (ABSSSI)、社区获得性细菌性肺炎 (CABP)和尿路感染(UTI)。在体外,omadacycline 对革兰氏阳性和革兰氏阴性需氧菌、厌氧菌和非典型病原体(包括军团菌和衣原体属)具有活性。奥马达环素提供每日一次的口服和静脉注射给药方式,其临床耐受性和安全性与当前用于治疗严重社区获得性感染的抗生素相比具有优势,而在这些感染中,耐药性已大大降低了有效性。在针对复杂皮肤和皮肤结构感染(包括 MRSA 感染患者)的研究中,omadacycline 表现出与利奈唑胺相当的疗效和耐受性。正在进行和计划中的临床研究正在评估 omadacycline 作为治疗严重社区获得性细菌感染的单一疗法,包括急性细菌性皮肤和皮肤结构感染 (ABSSSI) 和社区获得性细菌性肺炎 (CABP)。本综述概述了奥马环素的发现、微生物学、非临床数据以及可用的临床安全性和有效性数据,并参考了其他当代四环素衍生抗生素。细胞测定:omadacycline 对 MRSA、VRE 和 β-溶血性链球菌的 MIC90 分别为 1.0 μg/mL、0.25 μg/mL 和 0.5 μg/mL,omadacycline 对 PRSP 和流感嗜血杆菌的 MIC90 为 0.25 μg/ml分别为2.0μg/mL和2.0μg/mL。 Omadacycline 对生物体具有活性,表现出两种主要的耐药机制:核糖体保护和活性四环素外流。 Omadacycline 抑制蛋白质合成,但对 RNA、DNA 和肽聚糖合成无明显影响。此外,omadacycline 与细菌核糖体 30S 亚基上的四环素结合位点结合,基于额外的分子相互作用,其结合增强,类似于替加环素。
体内研究 (In Vivo)
使用小鼠腹膜内感染模型证明了omadacycline的体内功效。单次静脉注射剂量的 omadacycline 对肺炎链球菌、大肠杆菌和金黄色葡萄球菌(包括含有 tet (M) 和 tet (K) 外排的菌株和 MRSA 菌株)具有疗效。获得的肺炎链球菌的50%有效剂量(ED50)范围为0.45 mg/kg至3.39 mg/kg,获得的金黄色葡萄球菌的ED50范围为0.30 mg/kg至1.74 mg/kg,大肠杆菌的ED50为2.02毫克/公斤。
使用小鼠腹腔感染模型证明了奥美他环素的体内疗效。单次静脉注射奥马达环素对肺炎链球菌、大肠杆菌和金黄色葡萄球菌具有疗效,包括含有tet(M)和tet(K)外排的菌株和MRSA菌株。获得的肺炎链球菌的50%有效剂量(ED50s)范围为0.45 mg/kg至3.39 mg/kg,获得的金黄色葡萄球菌的ED50s范围为0.30 mg/kg至1.74 mg/kg,大肠杆菌的ED50为2.02 mg/kg。这些结果表明了强大的体内疗效,包括对含有常见耐药决定因素的菌株的活性。奥马达环素在体外表现出对多种革兰氏阳性和选择性革兰氏阴性病原体的活性,包括含有耐药性决定簇的菌株,这种活性在体内转化为强效疗效[1]。
酶活实验
奥马环素的体外稳定性及药物相互作用潜力[2]
测定了4.8 μM和48 μM的奥马环素在人微粒体和肝细胞中的稳定性。奥马大环素在人微粒体中孵育30分钟后,>90%的奥马环素被完整地回收。同样,奥马环素在人肝细胞中孵育24小时后,>86%的细胞恢复完好。这些结果表明,奥马环素没有代谢到任何显著程度。使用混合人肝微粒体制剂、S9、肝细胞质或重组黄素单加氧酶(FMO1、FMO3、FMO5)评估与奥马环素药物相互作用的可能性。在原代人肝细胞中,用1-100 μM的奥马环素和底物探针孵育24和48小时,评估CYP450同工酶的诱导作用。在浓度为1-50 μM的奥马环素和浓度近似于每个底物Km的同工酶特异性底物的混合人微粒体中,评估CYP450同工酶的抑制作用。评估的同工酶包括CYP 1A1、1A2、1B1、2A6、2B6、2C8、2C9、2C19、2D6、2E1、2J2和3A4/5。奥马环素没有诱导CYP同工酶,并且没有或很少(<40%的最大阳性对照反应)诱导它们的mrna。奥马达环素对CYP同工酶活性无明显抑制作用。此外,奥马环素及其可能的代谢物对CYP1A2 2C9、2D6或3A4/5没有时间依赖性的抑制作用。
细胞实验
omadacycline 对 MRSA、VRE 和 β-溶血性链球菌的 MIC90 分别为 1.0 μg/mL、0.25 μg/mL 和 0.5 μg/mL,omadacycline 对 PRSP 和流感嗜血杆菌的 MIC90 分别为 0.25 μg/ml 和 2.0 μg /mL,分别。 Omadacycline 对生物体具有活性,表现出两种主要的耐药机制:核糖体保护和活性四环素外流。 Omadacycline 抑制蛋白质合成,但对 RNA、DNA 和肽聚糖合成无明显影响。此外,omadacycline 与细菌核糖体 30S 亚基上的四环素结合位点结合,基于额外的分子相互作用,其结合增强,类似于替加环素。
动物实验
Systemic i.p. challenge model. Six-week-old, specific-pathogen-free, male CD-1 mice, weighing 18 to 30 g were used for all experiments. At 1 h postinfection (p.i.), mice were dosed intravenously (i.v.) with omadacycline or comparator compounds of interest, dissolved in sterile saline for injection at a volume of 10 ml/kg. All drug doses were formulated fresh immediately prior to administration and adjusted to account for percent activity. A minimum of four dose levels were tested per experiment with 5 mice/group. The typical doses tested ranged from 0.11 to 18 mg/kg of body weight, with exceptions for comparators that required significantly higher or lower doses to achieve 50% efficacy (dose range minimum-maximum, 0.08 to 54 mg/kg). Each study also included an untreated control group. Mice were housed in filter-topped cages in an isolated room and monitored for morbidity at least every 24 h for 7 days. Efficacy was determined by calculating the 50% effective dose (ED50) for all drugs tested. The ED50 is defined as the dose required to achieve 50% survival at 7 days p.i. and was estimated when possible using the formula y = 1/[1 + 10(log(k)-log(x)× 4.2)], where k = 0.5, by nonlinear regression analysis with Prism, version 3.0 software. [1]
0.45 mg/kg to 3.39 mg/kg; i.p.
Mice
药代性质 (ADME/PK)
The pharmacokinetics of omadacycline are best described by a linear, three-compartment model following a zero-order intravenous infusion or first-order oral administration with transit compartments to account for delayed absorption. Omadacycline has a volume of distribution (Vd) ranging from 190 to 204 L, a terminal elimination half-life (t½) of 13.5-17.1 h, total clearance (CLT) of 8.8-10.6 L/h, and protein binding of 21.3% in healthy subjects. Oral bioavailability of omadacycline is estimated to be 34.5%. A single oral dose of 300 mg (bioequivalent to 100 mg IV) of omadacycline administered to fasted subjects achieved a maximum plasma concentration (Cmax) of 0.5-0.6 mg/L and an area under the plasma concentration-time curve from 0 to infinity (AUC0-∞) of 9.6-11.9 mg h/L. The free plasma area under concentration-time curve divided by the minimum inhibitory concentration (i.e., fAUC24h/MIC), has been established as the pharmacodynamic parameter predictive of omadacycline antibacterial efficacy. Several animal models including neutropenic murine lung infection, thigh infection, and intraperitoneal challenge model have documented the in vivo antibacterial efficacy of omadacycline. A phase II clinical trial on complicated skin and skin structure infection (cSSSI) and three phase III clinical trials on ABSSSI and CABP demonstrated the safety and efficacy of omadacycline. The phase III trials, OASIS-1 (ABSSSI), OASIS-2 (ABSSSI), and OPTIC (CABP), established non-inferiority of omadacycline to linezolid (OASIS-1, OASIS-2) and moxifloxacin (OPTIC), respectively. Omadacycline is currently approved by the FDA for use in treatment of ABSSSI and CABP. Phase II clinical trials involving patients with acute cystitis and acute pyelonephritis are in progress. Mild, transient gastrointestinal events are the predominant adverse effects associated with use of omadacycline. Based on clinical trial data to date, the adverse effect profile of omadacycline is similar to studied comparators, linezolid and moxifloxacin. Unlike tigecycline and eravacycline, omadacycline has an oral formulation that allows for step-down therapy from the intravenous formulation, potentially facilitating earlier hospital discharge, outpatient therapy, and cost savings. Omadacycline has a potential role as part of an antimicrobial stewardship program in the treatment of patients with infections caused by antibiotic-resistant and multidrug-resistant Gram-positive [including methicillin-resistant Staphylococcus aureus (MRSA)] and Gram-negative pathogens. [https://pubmed.ncbi.nlm.nih.gov/31970713/]
毒性/毒理 (Toxicokinetics/TK)
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on the use of omadacycline during breastfeeding. It is unknown how much omadacycline is excreted into breastmilk, but the drug is only about 35% absorbed orally under optimal circumstances, and is probably less from milk because of its calcium content. The manufacturer states that breastfeeding is not recommended during treatment and for 4 days after the last dose. If an infant is breastfed, monitor the infant for possible effects on the gastrointestinal flora, such as diarrhea, candidiasis (e.g., thrush, diaper rash) or rarely, blood in the stool indicating possible antibiotic-associated colitis. As a theoretical precaution, avoid prolonged or repeat courses during nursing.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
参考文献

[1]. Antimicrob Agents Chemother.2014;58(2):1127-35.

[2]. Bioorg Med Chem.2016 Dec 15;24(24):6409-6419.

[3]. Pharmaceuticals (Basel). 2019 Apr 21;12(2):63.

[4]. Drugs. 2018 Dec;78(18):1931-1937.

[5]. Drugs. 2020 Feb;80(3):285-313.

其他信息
Omadacycline is a member of tetracyclines.
Omadacycline is a Tetracycline-class Antibacterial.
See also: Omadacycline (annotation moved to); Omadacycline Tosylate (annotation moved to). Omadacycline is the first intravenous and oral 9-aminomethylcycline in clinical development for use against multiple infectious diseases including acute bacterial skin and skin structure infections (ABSSSI), community-acquired bacterial pneumonia (CABP), and urinary tract infections (UTI). The comparative in vitro activity of omadacycline was determined against a broad panel of Gram-positive clinical isolates, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), Lancefield groups A and B beta-hemolytic streptococci, penicillin-resistant Streptococcus pneumoniae (PRSP), and Haemophilus influenzae (H. influenzae). The omadacycline MIC90s for MRSA, VRE, and beta-hemolytic streptococci were 1.0 μg/ml, 0.25 μg/ml, and 0.5 μg/ml, respectively, and the omadacycline MIC90s for PRSP and H. influenzae were 0.25 μg/ml and 2.0 μg/ml, respectively. Omadacycline was active against organisms demonstrating the two major mechanisms of resistance, ribosomal protection and active tetracycline efflux. In vivo efficacy of omadacycline was demonstrated using an intraperitoneal infection model in mice. A single intravenous dose of omadacycline exhibited efficacy against Streptococcus pneumoniae, Escherichia coli, and Staphylococcus aureus, including tet(M) and tet(K) efflux-containing strains and MRSA strains. The 50% effective doses (ED50s) for Streptococcus pneumoniae obtained ranged from 0.45 mg/kg to 3.39 mg/kg, the ED50s for Staphylococcus aureus obtained ranged from 0.30 mg/kg to 1.74 mg/kg, and the ED50 for Escherichia coli was 2.02 mg/kg. These results demonstrate potent in vivo efficacy including activity against strains containing common resistance determinants. Omadacycline demonstrated in vitro activity against a broad range of Gram-positive and select Gram-negative pathogens, including resistance determinant-containing strains, and this activity translated to potent efficacy in vivo.[1]
Omadacycline is novel, aminomethyl tetracycline antibiotic being developed for oral and intravenous (IV) administration for the treatment of community-acquired bacterial infections. Omadacycline is characterized by an aminomethyl substituent at the C9 position of the core 6-member ring. Modifications at this position result in an improved spectrum of antimicrobial activity by overcoming resistance known to affect older generation tetracyclines via ribosomal protection proteins and efflux pump mechanisms. In vitro, omadacycline has activity against Gram-positive and Gram-negative aerobes, anaerobes, and atypical pathogens including Legionella and Chlamydia spp. Omadacycline offers once daily oral and IV dosing and a clinical tolerability and safety profile that compares favorably with contemporary antibiotics used across serious community-acquired infections where resistance has rendered many less effective. In studies in patients with complicated skin and skin structure infections, including those with MRSA infections, omadacycline exhibited an efficacy and tolerability profile that was comparable to linezolid. Ongoing and planned clinical studies are evaluating omadacycline as monotherapy for treating serious community-acquired bacterial infections including Acute Bacterial Skin and Skin Structure Infections (ABSSSI) and Community-Acquired Bacterial Pneumonia (CABP). This review provides an overview of the discovery, microbiology, nonclinical data, and available clinical safety and efficacy data for omadacycline, with reference to other contemporary tetracycline-derived antibiotics.[2]
Omadacycline (Nuzyra®) is a new aminomethylcycline, approved by the U. S. Food and Drug Administration in 2018, as a tetracycline antibacterial. It can be used in community-acquired pneumonia and in acute bacterial skin and skin-structure infections. It was developed and is commercialized by Paratek Pharmaceuticals. It is a semisynthetic compound, derived from minocycline, capable of evading widely distributed efflux and target protection antibacterial resistance mechanisms and has demonstrated activity in a broad spectrum of bacteria.[3]
Paratek Pharmaceuticals are developing omadacycline (NUZYRA™), a first-in-class orally active aminomethylcycline antibacterial, as a treatment for various bacterial infections. The drug, which is available in intravenous and oral formulations, has a broad spectrum of antibacterial activity and was recently approved in the USA as a treatment for the treatment of community acquired bacterial pneumonia (CABP) and acute bacterial skin and skin structure infections (ABSSSI) in adults. This article summarizes the milestones in the development of omadacycline leading to this first global approval for the treatment of CABP and ABSSSI.[4]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C29H40N4O7
分子量
556.66
精确质量
556.29
元素分析
C, 62.57; H, 7.24; N, 10.07; O, 20.12
CAS号
389139-89-3
相关CAS号
Omadacycline tosylate;1075240-43-5;Omadacycline hydrochloride;1196800-39-1;Omadacycline-d9;2272886-41-4;Omadacycline mesylate;1196800-40-4; 389139-89-3
PubChem CID
54697325
外观&性状
Light yellow to yellow solid powder
LogP
2.706
tPSA
177.65
氢键供体(HBD)数目
6
氢键受体(HBA)数目
10
可旋转键数目(RBC)
7
重原子数目
40
分子复杂度/Complexity
1140
定义原子立体中心数目
4
SMILES
O([H])[C@@]12C(=C(C(N([H])[H])=O)C([C@]([H])([C@]1([H])C([H])([H])[C@]1([H])C([H])([H])C3=C(C([H])=C(C([H])([H])N([H])C([H])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H])C(=C3C(=C1C2=O)O[H])O[H])N(C([H])([H])[H])C([H])([H])[H])N(C([H])([H])[H])C([H])([H])[H])=O)O[H]
InChi Key
JEECQCWWSTZDCK-IQZGDKDPSA-N
InChi Code
InChI=1S/C29H40N4O7/c1-28(2,3)12-31-11-14-10-17(32(4)5)15-8-13-9-16-21(33(6)7)24(36)20(27(30)39)26(38)29(16,40)25(37)18(13)23(35)19(15)22(14)34/h10,13,16,21,31,34,36-37,40H,8-9,11-12H2,1-7H3,(H2,30,39)/t13-,16-,21-,29-/m0/s1
化学名
(4S,4aS,5aR,12aS)-4,7-bis(Dimethylamino)-9-(((2,2-dimethylpropyl)amino)methyl)- 3,10,12,12a- tetrahydroxy-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2- carboxamide
别名
PTK-0796; PTK 0796; Omadacycline; Amadacycline; 389139-89-3; nuzyra; PTK0796; Nuzyra;Amadacyclin
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 请将本产品存放在密封且受保护的环境中(例如氮气保护),避免吸湿/受潮和光照。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO:10 mM
Water:N/A
Ethanol:N/A
溶解度 (体内实验)
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。

注射用配方
(IP/IV/IM/SC等)
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO 50 μL Tween 80 850 μL Saline)
*生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。
注射用配方 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO 400 μL PEG300 50 μL Tween 80 450 μL Saline)
注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO 900 μL Corn oil)
示例: 注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。
View More

注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO 900 μL (20% SBE-β-CD in Saline)]
*20% SBE-β-CD in Saline的制备(4°C,储存1周):将2g SBE-β-CD (磺丁基-β-环糊精) 溶解于10mL生理盐水中,得到澄清溶液。
注射用配方 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (如: 500 μL 2-Hydroxypropyl-β-cyclodextrin (羟丙基环胡精) 500 μL Saline)
注射用配方 6: DMSO : PEG300 : Castor oil : Saline = 5 : 10 : 20 : 65 (如: 50 μL DMSO 100 μL PEG300 200 μL Castor oil 650 μL Saline)
注射用配方 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (如: 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
注射用配方 8: 溶解于Cremophor/Ethanol (50 : 50), 然后用生理盐水稀释。
注射用配方 9: EtOH : Corn oil = 10 : 90 (如: 100 μL EtOH 900 μL Corn oil)
注射用配方 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL EtOH 400 μL PEG300 50 μL Tween 80 450 μL Saline)


口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠)
口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素)
示例: 口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。
View More

口服配方 3: 溶解于 PEG400 (聚乙二醇400)
口服配方 4: 悬浮于0.2% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 5: 溶解于0.25% Tween 80 and 0.5% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 6: 做成粉末与食物混合


注意: 以上为较为常见方法,仅供参考, InvivoChem并未独立验证这些配方的准确性。具体溶剂的选择首先应参照文献已报道溶解方法、配方或剂型,对于某些尚未有文献报道溶解方法的化合物,需通过前期实验来确定(建议先取少量样品进行尝试),包括产品的溶解情况、梯度设置、动物的耐受性等。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 1.7964 mL 8.9821 mL 17.9643 mL
5 mM 0.3593 mL 1.7964 mL 3.5929 mL
10 mM 0.1796 mL 0.8982 mL 1.7964 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
Omadacycline vs. Moxifloxacin for the Treatment of Community-Acquired Bacterial Pneumonia
CTID: NCT04779242
Phase: Phase 3
Status: Completed
Date: 2024-08-22
Study to Evaluate the PK of IV and PO Omadacycline in Children and Adolescents With Suspected or Confirmed Bacterial Infections
CTID: NCT05217537
Phase: Phase 1
Status: Recruiting
Date: 2024-08-22
A Study to Compare the Effect of Omadacycline Versus Moxifloxacin in Healthy Adult Volunteers
CTID: NCT06462326
Phase: Phase 1
Status: Recruiting
Date: 2024-06-17
A Phase 3b Randomized, Double-blind, Multi-center Study to Compare the Safety and Efficacy of Omadacycline to Moxifloxacin for Treating Adult Subjects With CABP
CTID: NCT06162286
Phase: Phase 3
Status: Recruiting
Date: 2024-06-14
Effects of Intravenous (IV) Omadacycline on Gut Microbiome
CTID: NCT05515562
Phase: Phase 4
Status: Recruiting
Date: 2024-04-25
联系我们