规格 | 价格 | 库存 | 数量 |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
Other Sizes |
|
靶点 |
AMYR, CTR[1][2][3].
|
---|---|
体外研究 (In Vitro) |
通过体外受体结合和效力筛选来确定脂肪酸酰化的最佳附着点,从而对SAR进行了研究,得出了cagrilintide (23)(AM833或NN0174-0833;拟议的国际非专有名称:cagrilinide)。可以推测脂肪酸的定位会影响类似物与胰淀素受体相互作用的能力,并增加或减少与受体和大脑的接触。选择的共同骨架类似于普兰林肽(见表1),而不是h-amylin,以减少纤维形成的问题。[2]
我们发现,骨架中的某些位置可以突变为赖氨酸,随后在赖氨酸侧链上用弱白蛋白结合脂肪酸酰化,类似于利拉鲁肽中使用的脂肪酸,效力没有或略有损失(例如,N末端部分的位置1和3,螺旋部分的位置11和18,以及C末端部分的21、28和31),而在功能测定中,其他位置的修饰结果显示效力降低(例如,位置2、10、14-17和29)(数据未显示)。N-末端部分被确定为脂肪酸最有希望附着的位置。当用C20二酸(强白蛋白结合)对N-末端脂化的类似物与参考品普兰林肽和s-降钙素进行比较时,观察到效力明显下降。效力的丧失是由测定中白蛋白的存在引起的,通常在更强的白蛋白结合物中出现,例如在塞马谷肽的情况下。脂肪酸与白蛋白结合,干扰受体相互作用,导致效力明显丧失。相比之下,结合测定是在卵清蛋白存在的情况下进行的,卵清蛋白减少了非特异性结合,但不与脂肪酸结合或影响受体相互作用。还证实了酰胺化的C末端对生物活性至关重要,几乎没有修饰的空间,对修饰的低灵敏度和易于合成的最佳结合位置似乎是N末端。这是一个惊喜,因为胰淀素和GLP-1受体都属于GPCR受体的B1亚家族,但GLP-1不能在N端脂质化而不丧失效力。[2] 这些观察结果可以通过与AMY3R结合的cagrilintide (23)同源模型(图1)以及GLP-1受体最近的冷冻EM结构来解释。这些结构预测CTR/RAMP复合物具有比GLP-1受体更开放的结构。此外,虽然GLP-1的N端以α-螺旋的形式渗透到跨膜(TM)结构域中(参见支持信息中的图S-5),但胰淀素肽的N端预计会形成一个由二硫键稳定的环,该环指向TM区域,从而耐受N端脂质化。AMY3R的同源模型,加上没有脂质化的cagrilintide (23)的apo晶体结构,也预测在cagrilintide (23)的N端部分存在一个螺旋片段(残基5-18),该片段由14和17位之间的盐桥稳定,并且C端总体上采用扩展的构象,与CTR的细胞外N端结构域结合,其中残基20-24形成一个非结构化的环。[2] |
体内研究 (In Vivo) |
化合物 23(醋酸卡格林肽)(0.1、1、3、10、30 nmol/kg;单剂量)可减少大鼠的食物摄入量[1]。醋酸卡格林肽(10 nmol/kg;静脉注射或皮下注射;单剂量)证明了良好的药代动力学参数[1]。
|
酶活实验 |
SAR中使用的体外检测:[2]
筛选计划包括对人CTRa和AMY3受体的体外筛选,以及对强效化合物的类似大鼠筛选。因此,Cagrilintide的选择是通过8种不同的体外试验(两种化合物的功能效力和结合亲和力)完成的。模拟开发已经进行了一段时间。为了确保在此期间测定的质量和稳定性,我们在每个实验中都加入了普兰林肽作为参考化合物,这使得随着时间的推移进行比较成为可能和有意义的。此外,普兰林肽的转换(效力或亲和力)分别用作AMY3R和CTR表达的验证。 人降钙素受体萤光素酶测定[2] 测量cAMP反应元件介导的活性的功能报告分析在该功能分析中使用了稳定转染有人降钙素受体和cAMP反应元件萤光素酶报告基因的幼仓鼠肾(BHK)570细胞系。在该细胞系中,当按照本节所述进行测量时,人降钙素受体活性反映在对胰淀素类似物产生反应的萤光素酶强度上。细胞在含有10%胎牛血清(FBS)、1%Pen/Strep和1 mM丙酮酸钠的生长培养基(Dulbecco改良的Eagle培养基[DMEM])中培养。甲氨蝶呤(250 nM)和新霉素(500µg/ml)分别用作萤光素酶和降钙素受体的选择标记。用PBS洗涤约80-90%融合的细胞,并用Versene将其从板上提起。离心(2分钟,1300 rpm)后,将细胞沉淀溶解在10%DMSO、30%FBS和60%生长培养基中(见上文),并冷冻(-80°C)直至使用。实验前一天,将细胞解冻、洗涤并接种在白色96孔培养板上的100μl生长培养基(如上所述)中(20000个细胞/孔)。在37°C和5%CO2下孵育过夜后,用50μl/孔的测定培养基(DMEM[不含酚红]、谷氨酸、10%FBS和10 mM HEPES([4-(2-羟乙基)-1-哌嗪乙磺酸],pH 7.4)代替生长培养基。此外,加入在测定缓冲液中稀释的50μl/孔样品。在37°C和5%CO2下孵育3小时后,取出培养基,用100μl/孔PBS和100μl/min孔SteadyLite代替。将板密封并在室温下孵育30米。最后,在TopCounter上以单光子计数(SPC)模式测量发光。EC50值在GraphPad Prism中使用非线性回归计算,pEC50值计算为-LogEC50。 人胰淀素3受体萤光素酶测定[2] 测量cAMP反应元件介导的活性的功能报告分析为了产生表达AMY3R的稳定克隆,Hollex-1细胞进一步用受体活性修饰蛋白3(RAMP3)和pcDNA3.1/潮霉素转染,后者用作选择标记。简而言之,转染是在转染前一天在接种了1250000的T75烧瓶中进行的。用9μg RAMP3 cDNA、1μg pcDNA3.1/潮霉素和25μl FuGENE 6转染细胞。此后,选择表达RAMP3的稳定克隆。稳定的克隆在含有10%FBS、1%Pen/Strep和1 mM丙酮酸钠、甲氨蝶呤(250 nM)、新霉素(500µg/ml)和潮霉素(400µg/ml)的DMEM中培养。甲氨蝶呤(250 nM)、新霉素(500µg/ml)和潮霉素(400µg/ml)分别用作萤光素酶、降钙素受体和RAMP3的选择标记。用PBS洗涤约80-90%融合的细胞,并用Versene将其从板上提起。离心(2分钟,1300 rpm)后,S8将细胞沉淀溶解在10%DMSO、30%FBS和60%生长培养基中(见上文),并冷冻(-80°C)直至使用。实验前一天,将细胞解冻、洗涤并接种在白色96孔培养板上的100μl生长培养基(如上所述)中(20000个细胞/孔)。在37°C和5%CO2下孵育过夜后,用50μl/孔的测定培养基(DMEM[不含酚红]、Glutamax、10%FBS和10 mM HEPES,pH 7.4)代替生长培养基。此外,加入在测定缓冲液中稀释的50μl/孔样品。在37°C和5%CO2下孵育3小时后,取出培养基,用100μl/孔PBS和100μl/min孔SteadyLite代替。将板密封并在室温下孵育30米。最后,在SPC模式下在TopCounter 上测量发光。EC50值在GraphPad Prism中使用非线性回归计算,pEC50值计算为-LogEC50。 大鼠降钙素受体[2] 根据制造商的建议(BHK-tk-ts 13是BHK细胞系的温度敏感克隆,如Talavera和Basilico,1977年所述),使用FuGENE 6以1µg cDNA:1.5µl FuGENE 6的比例用大鼠降钙素受体瞬时转染cAMP测定BHK 13细胞。1细胞在含有10%FBS和1%Pen/Strep的DMEM中生长。转染后约24小时,收集细胞并冷冻(-80°C)直至使用。在实验当天,将细胞解冻,洗涤两次,然后在PBS缓冲液(2%人血清白蛋白[HSA],0.5%吐温20)中洗涤。将细胞(100000个细胞/孔)接种到带有样品或标准品的96孔FlashPlate中。在此,将50µl悬浮液加入到含有50µl测试化合物或参考化合物(2%HSA,0.5%吐温20)的FlashPlate中。将混合物摇动5分钟,并在室温下静置25分钟。用100µl检测混合物pro-well(检测混合物;11ml检测缓冲液和100µl[~2µCi]cAMP[125I]示踪剂)停止反应。然后用塑料密封板,摇动30分钟,静置过夜(或至少2小时),并在Topcounter中测量闪烁(2分钟/孔)。一般来说,遵循FlashPlate试剂盒方案中描述的检测程序(FlashPlate cAMP检测[NEN生命科学产品目录号SMP004])。使用标准曲线测定cAMP量,曲线显示在GraphPad PRISM中。EC50值在GraphPad Prism中使用非线性回归计算,pEC50值计算为‑LogEC50。 大鼠胰淀素受体3[2] cAMP测定BHK-tk-ts13细胞(Talavera和Basilico,1977)用2.5µl FuGENE 6prµg cNDA瞬时转染大鼠降钙素受体(150µg大鼠CTR cDNA pr 10000000细胞)和大鼠RAMP 3(cDNA比率为1µg CTR cDNA pr 1.5µg大白鼠RAMP3)。细胞在含有10%FBS和1%Pen/Strep的DMEM中生长。转染后约24小时,收集细胞并冷冻(-80°C)直至使用。在实验当天,将细胞解冻,洗涤两次,然后在PBS缓冲液(2%HSA,0.5%吐温20)中洗涤。将细胞(100000个细胞/孔)接种到带有样品或标准品的96孔FlashPlates(Perkin-Elmer)中。在此,将50µl悬浮液加入到含有50µl测试化合物或参考化合物(2%HSA,0.5%吐温20)的FlashPlate中。将混合物摇动5分钟,并在室温下静置25分钟。用100µl检测混合物pro-well(检测混合物;11 mL检测缓冲液和100µl[~2µCi]cAMP[125I]示踪剂)停止反应。然后用塑料密封板,摇动30分钟,静置过夜(或至少2小时),并在Topcounter中测量闪烁(2分钟/孔)。一般来说,遵循FlashPlate试剂盒方案中描述的测定程序(Plate cAMP测定。使用标准曲线在S9中测定cAMP量,曲线显示在GraphPad PRISM中。使用非线性回归在GraphPad PRISM中计算EC50值,将pEC50值计算为-LogEC50。 降钙素受体结合试验(人和大鼠)[2] 使用来自PerkinElmer的闪烁邻近试验(SPA)珠(RPNQ0001)和含有人或大鼠降钙素受体的细胞膜进行结合试验。用人或大鼠降钙素受体瞬时转染BHK-tk-ts13细胞,并如上所述进行培养。膜的制备方法如下:用PBS冲洗细胞,在收获前用Versene孵育约5分钟。用PBS冲洗细胞,将细胞悬浮液以1000rpm离心5分钟。将细胞在含有20 mM Na HEPES和10 mM EDTA(pH 7.4)的缓冲液中均质化,并在20000 rpm下离心15分钟。将所得沉淀重新悬浮、均质化并离心(20000 rpm,15分钟)于含有20 mM Na-HPES和0.1 mM EDTA的缓冲液(pH 7.4,缓冲液2)中。将所得沉淀重新悬浮在缓冲液2中,并测量蛋白质浓度。在整个过程中,匀浆保持低温。膜在使用前保持在-80°C。在384孔Optiplate中进行测定,总体积为40µl。膜与SPA珠以1:1的比例混合。SPA珠的最终浓度为0.05mg/孔。将测试化合物溶解在DMSO中,并在测定缓冲液(50 mM HEPES,pH 7.4,1 mM CaCl2,5 mM MgCl2,0.1%卵清蛋白和0.02%吐温20)中进一步稀释。将放射性配体125I-降钙素溶解在测定缓冲液中,并以75 pM/孔(30000 cpm/10µl)的终浓度加入Optiplate中。在离心(1500 rpm,10分钟)之前,将最终混合物在25°C下孵育120分钟。样品在TopCounter上进行分析。使用GraphPad Prism5(单位点结合竞争分析)计算IC50,pIC50值计算为-LogIC50。 胰淀素3受体结合试验(人和大鼠)[2] 使用来自PerkinElmer的SPA珠(RPNQ0001)和含有人或大鼠胰淀素3受体的细胞膜进行结合测定。以等摩尔比(1:3µg)用人或大鼠降钙素受体和人或大白鼠RAMP 3瞬时转染BHK13细胞,并如上所述进行培养。膜的制备方法如下:用PBS冲洗细胞,在收获前用Versene孵育约5分钟。用PBS冲洗细胞,将细胞悬浮液以1000rpm离心5分钟。将细胞在含有20 mM Na HEPES和10 mM EDTA(pH 7.4)的缓冲液中均质化(超高压),并在20000 rpm下离心15分钟。将所得沉淀重新悬浮、均质化并离心(20000 rpm,15分钟)于含有20 mM Na-HEPES和0.1 mM EDTA的缓冲液(pH 7.4,缓冲液2)中。将所得沉淀重新悬浮在缓冲液2中,并测量蛋白质浓度(BCA蛋白质测定,Pierce)。在整个过程中,匀浆保持低温。膜在使用前保持在-80°C。在384孔Optiplate中进行测定,总体积为40µl。膜与SPA珠以1:1的比例混合。SPA珠的最终浓度为0.05mg/孔。将测试化合物溶解在DMSO中,并在测定缓冲液(50 mM HEPES,pH 7.4,1 mM CaCl2,5 mM MgCl2,0.1%卵清蛋白和0.02%吐温20)中进一步稀释。将放射性配体125I大鼠胰淀素溶解在测定缓冲液中,并以50 pM/孔(20000 cpm/10µl)的最终S10浓度加入Optiplate。在离心(1500 rpm,10分钟)之前,将最终混合物在25°C下孵育120分钟。样品在TopCounter上进行分析。使用GraphPad Prism5(单位点结合竞争分析)计算IC50,pIC50值计算为-LogIC50。 |
细胞实验 |
纤维蛋白形成倾向测试(ThT检测)[2]
根据纤维形成的倾向评估单个胰淀素类似物的稳定性,以纤维形成前的时间(滞后时间)和溶解肽的损失(肽恢复)表示。评估了暴露于机械应力时形成原纤维的倾向,如之前使用噻唑染料ThT的胰岛素制剂所述,该染料在淀粉样原纤维存在的情况下表现出特定的荧光特性。通过将每种化合物溶解在10 mM甘氨酰甘氨酸缓冲液(pH 4.0)或10 mM HEPES缓冲液(pH7.5)中至标称浓度为250μM,然后加入ThT储备溶液(0.1 mM)至最终ThT浓度为1μM来制备样品。将每种溶液等分(200μL/孔;n=4)到用透明箔密封的微量滴定板上。使用Fluoroskan Ascent FL荧光板读数器在37°C温育、960 rpm、1 mm振幅下施加机械应力,荧光读取间隔为20分钟,持续45小时(滤光片:激发444 nm;发射485 nm)。通过目视检查每个样品的荧光与时间图来评估荧光增加的滞后时间。如果没有检测到原纤维形成,则将滞后时间设置为等于测试长度(45小时)。分析后,将代表单个复制品的孔合并,使用离心(20000g,室温下30分钟)分离残留的可溶性肽,然后过滤0.22μm。使用配备XBridge柱(桥接乙基硅氧烷/二氧化硅杂化物130 C18 3.5μm至4.6×50 mm)的Waters Alliance 2695系统测定残留溶解肽的量,流速为2 mL/min,温度为30°C,检测波长为215/276 nm。施加结合洗脱剂A(7.7%w/w乙腈、200 mM Na2SO4、20 mM NaH2PO4、20 mmol Na2HPO4,pH 7.2)和洗脱剂B(65.5%w/w乙腈)的梯度(%A/%B:0-11/2分钟:80/20;11/2-2分钟:与50/50呈线性关系;2-51/2分钟:50/50;51/2-6分钟:与80/20呈线性关系)。以相对于暴露于机械应力之前的溶解肽量的相对比例(肽回收率)报告残留溶解肽的量。 SAR分析的体外表征[2] 在稳定表达报告基因和指定受体的幼仓鼠肾(BHK)细胞上进行的cAMP反应元件萤光素酶报告基因测定中获得了对人AMY3R和CTR的效力。通过对瞬时表达受体的BHK细胞进行cAMP测定,确定了对大鼠AMY3R和CTR的效力。萤光素酶测定细胞在实验前一天解冻并孵育过夜。在实验当天,洗涤细胞并用激动剂孵育3小时。移除培养基,用1:1比例的磷酸盐缓冲盐水和稳定石代替,在室温下孵育30分钟,然后测量发光。在cAMP测定中,在实验当天将转染的细胞解冻并接种到FlashPlates中,并与激动剂一起孵育30分钟。用检测混合物停止反应。然后用塑料密封板,摇动,然后静置至少2小时,然后测量闪烁。EC50值在GraphPad Prism中计算。 使用PerkinElmer的珠子和含有AMY3R或CTR的细胞膜通过闪烁邻近试验测定表观结合亲和力。用人或大鼠受体瞬时转染BHK细胞并培养24小时。收集、制备膜,并将其保持在-80°C下直至使用。该测定在384孔Optiplate中进行。将膜与闪烁邻近测定珠以1:1的比例混合。将测试化合物溶解在DMSO中,在测定缓冲液中进一步稀释,并与溶解的放射性配体一起加入Optiplate中。在CTR结合试验中,125I降钙素用作放射性配体,125I大鼠胰淀素用作AMY3R试验的放射性配体。在离心之前,将最终混合物在25°C下孵育120分钟。样品在TopCounter(Packard)上进行分析。使用GraphPad Prism5计算IC50值。为了确保测定的质量和稳定性,我们在SAR中使用的所有测定中的每个实验中都将普兰林肽作为参考化合物。观察到的普兰林肽效力或结合亲和力的变化分别用作AMY3R和CTR(a)的验证。当用胰淀素或降钙素肽类似物刺激时,未转染细胞中没有观察到反应,当暴露于胰淀素和降钙素多肽家族的放射性配体时,未感染细胞中也没有观察到信号。 |
动物实验 |
Animal/Disease Models: Sprague Dawley male rats (12weeks old; ~400 g)[1]
Doses: 0.1, 1, 3, 10, 30 nmol/kg Route of Administration: subcutaneous (sc) injection; single Experimental Results: decreased food intake in the rat for several days at doses in the range of 1-10 nmol/kg. Animal/Disease Models: Sprague Dawley male rats (12weeks old; ~400 g)[1] Doses: 10 nmol/kg Route of Administration: intravenous (iv) injection or subcutaneous (sc) injection; single Experimental Results: demonstrated good pharmacokinetic/PK parameters with T1/2 of 20, 27 h for iv and sc, respectively. In Vivo Experiments [2] In vivo experiments were approved under a license from the Danish Animal Experiments Inspectorate. All animals had access to shelter, nesting material, and chewing sticks and were acclimatized and getting used to handling at least 1 week prior to any experiments. Rats were housed in groups, except for 1 week prior to and during the monitoring of the food intake. Acute Food Intake in Rats [2] Effect on appetite in lean rats measured up to 60 h after single administration of selected amylin analogues was analyzed using an automated food intake monitoring system, in which up to 32 rats (male Sprague Dawley, Taconic Europe, body weight: 200–250 g), with ad libitum access to standard chow and tap water from water bottles, were single housed for individual registration of food consumption. The rats were acclimatized to reverse light cycle (12 h light and 12 h dark) and single housing at least 5 days prior to testing at controlled temperature conditions (20 °C ± 1 °C). Amylin analogues were administered subcutaneously immediately before lights were turned off. Food intake was recorded for 48 or 60 h post-dosing. Dose levels were 3 and 30 nmol/kg for screening purposes, n = 5–7. Control rats were dosed with vehicle. Test substances were formulated in 2 mM acetate, 250 mM glycerol, 0.025% Tween-20, and pH 4. Accumulated food intake was calculated for the periods 0–24 and 24–48, 48–60 h, respectively. Mean accumulated food intake in each dose group was compared to vehicle and reported as a percentage of mean food intake in the vehicle group, which was defined as 100%. Pharmacokinetic Evaluation of Cagrilintide [2] Sprague Dawley male rats (approx. 400 g, 12 week old) were familiarized with handling procedures during a 2-week period prior to the PK experiment. An intravenous bolus injection was performed via a catheter Venflon in the tail vein of the rat, while the rat was temporarily restrained, and subcutaneous injection was performed in the neck. Dosing volume was 2 mL/kg of 10 nmol/kg 23. Blood samples (200 μL) were taken from the tongue vein at 5, 15, and 30 min and 1, 11/2, 2, 4, 6, 12, 24, 48, 72, and 96 h. All blood samples were collected into test tubes containing EDTA for stabilization and kept on ice until centrifugation. Plasma was separated from whole blood by centrifugation, and the plasma was stored at −20 °C or lower until analysis. Plasma samples were analyzed by LC–MS on either a triple quadrupole instrument from Applied Biosystems or an Orbitrap. For analysis on the triple quadrupole, a multiple reaction monitoring (MRM) transition from m/z 1103 → 1075 was used, whereas a scan range from m/z 1102–1107 (selected ion monitoring) was used on the Orbitrap. Plasma samples were diluted with three volumes of ethanol containing 1% formic acid, and the resultant supernatant was subjected to online sample clean-up by turbulent flow chromatography on a Cyclone (50 × 0.5 mm) column from Thermo Fisher prior to LC–MS analysis. For LC–MS analysis, an Onyx Monolithic C18 column from Phenomenex (50 × 2.0 mm ID) was used. The mobile phases for gradient HPLC comprised 5 and 95% organic solvent (50:50 mixture of acetonitrile and methanol), and formic acid was added to both eluents at a concentration of 0.1%. The lower limit of quantification was 2 nM. Plasma concentration–time profiles were analyzed by a non-compartmental analysis using Phoenix WinNonlin Professional 6.2 (Pharsight, Mountain View, CA, US). Calculations were performed using individual concentration–time values from the animals. The AUC was calculated and given as AUCinf_pred unless otherwise stated. The percentage of extrapolated AUC was less than 25% in all studies. The s.c. bioavailability was calculated as (AUC/dose) s.c./(AUC/dose) i.v. The given mean values are all arithmetric except for T1/2 and Tmax, which are given as harmonic mean and geometric mean, respectively. |
药代性质 (ADME/PK) |
The duration of action of 23 was indicated from the long-lasting reduction of appetite in the food intake screening model (Figure 3) and was further confirmed in a pharmacokinetic study in rats (Figure 4 and Table 7). In addition, the lag-time in ThT assay at pH 7.5 was shorter for 22 than that for 23. Consequently, 23 was chosen for clinical development and completed clinical phase 2 in 2020. A particular focus was on the combination of semaglutide and cagrilintide as the combination of amylin and GLP-1 therapy has been suggested to work using partly complimentary mechanisms. The clinical data published for the combination of cagrilintide and semaglutide indeed indicate that cagrilintide in a 20 week phase 1B study was able to induce further 7.4% weight loss on top of semaglutide to a total weight loss of 17.1%, thereby warranting further studies in obesity. The half-life was found to be 159–195 h. This validates lipidation with fatty di-acids as a mean to prolong half-life of peptide hormones, though albumin binding of cagrilintide was not directly measured. There is rich evidence that long-acting peptides and proteins conjugated to negatively charged fatty acid derivatives exhibit strong and reversible albumin binding. In addition, we have studied similar in vitro receptor assays as reported here but in the presence of varying amounts of albumin, and the data (not shown here) support that cagrilintide is a reversible albumin binder like the GLP-1 analogue semaglutide.[2]
species; n; RoA; dose (nmol/kg); AUC/D (h·kg/L); Vz (L/kg); Cl (L/h/kg); T1/2 (h) Sprague Dawley rat; 5; i.v.; 10; 266; 0.109; 0.00377; 20 ± 2 Sprague Dawley rat; 5; s.c.; 10; 87; N/A; N/A; 27 ± 3 |
参考文献 | |
其他信息 |
Obesity and associated comorbidities are a major health burden, and novel therapeutics to help treat obesity are urgently needed. There is increasing evidence that targeting the amylin receptors (AMYRs), heterodimers of the calcitonin G protein-coupled receptor (CTR) and receptor activity-modifying proteins, improves weight control and has the potential to act additively with other treatments such as glucagon-like peptide-1 receptor agonists. Recent data indicate that AMYR agonists, which can also independently activate the CTR, may have improved efficacy for treating obesity, even though selective activation of CTRs is not efficacious. AM833 (cagrilintide) is a novel lipidated amylin analog that is undergoing clinical trials as a nonselective AMYR and CTR agonist. In the current study, we have investigated the pharmacology of AM833 across 25 endpoints and compared this peptide with AMYR selective and nonselective lipidated analogs (AM1213 and AM1784), and the clinically used peptide agonists pramlintide (AMYR selective) and salmon CT (nonselective). We also profiled human CT and rat amylin as prototypical selective agonists of CTR and AMYRs, respectively. Our results demonstrate that AM833 has a unique pharmacological profile across diverse measures of receptor binding, activation, and regulation. SIGNIFICANCE STATEMENT: AM833 is a novel nonselective agonist of calcitonin family receptors that has demonstrated efficacy for the treatment of obesity in phase 2 clinical trials. This study demonstrates that AM833 has a unique pharmacological profile across diverse measures of receptor binding, activation, and regulation when compared with other selective and nonselective calcitonin receptor and amylin receptor agonists. The present data provide mechanistic insight into the actions of AM833. [1]
A hallmark of the pancreatic hormone amylin is its high propensity toward the formation of amyloid fibrils, which makes it a challenging drug design effort. The amylin analogue pramlintide is commercially available for diabetes treatment as an adjunct to insulin therapy but requires three daily injections due to its short half-life. We report here the development of the stable, lipidated long-acting amylin analogue cagrilintide (23) and some of the structure-activity efforts that led to the selection of this analogue for clinical development with obesity as an indication. Cagrilintide is currently in clinical trial and has induced significant weight loss when dosed alone or in combination with the GLP-1 analogue semaglutide. [2] Obesity is defined as abnormal or excessive fat accumulation that contributes to detrimental health impacts. One-third of the population suffers from obesity, and it is important to consider obesity as a chronic disease requiring chronic treatment. Amylin is co-secreted with insulin from β pancreatic cells upon nutrient delivery to the small intestine as a satiety signal, acts upon sub-cortical homeostatic and hedonic brain regions, slows gastric emptying, and suppresses post-prandial glucagon responses to meals. Therefore, new pharmacological amylin analogues can be used as potential anti-obesity medications in individuals who are overweight or obese. In this narrative review, we analyse the efficacy, potency, and safety of amylin analogues. The synthetic amylin analogue pramlintide is an approved treatment for diabetes mellitus which promotes better glycaemic control and small but significant weight loss. AM833 (cagrilintide), an investigational novel long-acting acylated amylin analogue, acts as a non-selective amylin receptor. This calcitonin G protein-coupled receptor agonist can serve as an attractive novel treatment for obesity, resulting in reduction of food intake and significant weight loss in a dose-dependent manner.[3] |
分子式 |
C196H316N54O61S2
|
---|---|
分子量 |
4469.06
|
相关CAS号 |
Cagrilintide;1415456-99-3
|
外观&性状 |
White to off-white solid powder
|
别名 |
AM-833 acetate; AM833 acetate; Cagrilintide acetate; 1415456-99-3; NN-0174-0833; NN-01740833; NN0174-0833; LDERDVMBIYGIOI-IZVMHKDJSA-N;
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 请将本产品存放在密封且受保护的环境中(例如氮气保护),避免吸湿/受潮和光照。 |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
H2O :~50 mg/mL (~11.19 mM)
|
---|---|
溶解度 (体内实验) |
Note: 如何溶解多肽产品?请参考本产品网页右上角“产品说明书“文件,第4页。 注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。 注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 0.2238 mL | 1.1188 mL | 2.2376 mL | |
5 mM | 0.0448 mL | 0.2238 mL | 0.4475 mL | |
10 mM | 0.0224 mL | 0.1119 mL | 0.2238 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。