| 规格 | 价格 | 库存 | 数量 |
|---|---|---|---|
| 5mg |
|
||
| 10mg |
|
||
| 25mg |
|
||
| 50mg |
|
||
| 100mg |
|
||
| 250mg | |||
| 500mg | |||
| Other Sizes |
| 靶点 |
OX1 Receptor ( Ki = 57 nM ); OX1 Receptor ( Ki = 27 nM )
|
||
|---|---|---|---|
| 体外研究 (In Vitro) |
体外活性:SB-408124结合 1 型下丘脑分泌素受体 (HcrtR1),pKi 值为 7.57。钙动员研究表明,SB-408124 是 OX1 受体的功能性拮抗剂,其亲和力选择性约为 OX2 受体的 50 倍。最近的一项研究表明,在 Orexin A 给药前用 SB-401824 对原代培养的大鼠星形胶质细胞进行预处理,可显着降低 Orexin A 对基础和毛喉素激活的 cAMP 产生的刺激作用。激酶测定:SB408124 是 OX1 受体的非肽拮抗剂,全细胞和膜中的 Ki 值分别为 57 nM 和 27 nM;其选择性比 OX2 受体高 50 倍。细胞测定:SB-408124 结合 1 型下丘脑分泌素受体 (HcrtR1),pKi 值为 7.57。钙动员研究表明,SB-408124 是 OX1 受体的功能性拮抗剂,其亲和力选择性约为 OX2 受体的 50 倍。最近的一项研究表明,在 Orexin A 给药前用 SB-401824 对原代培养的大鼠星形胶质细胞进行预处理,可显着降低 Orexin A 对基础和毛喉素激活的 cAMP 产生的刺激作用。
|
||
| 体内研究 (In Vivo) |
SB-408124(30 μg/10 μL,脑室内给药)可减少 Wistar 大鼠中 Orexin-A 诱导的水摄入量。脑室内注射 Orexin-A (30 μg/10 μL) 可阻断组胺或 2.5% NaCl 诱导的加压素 (VP) 水平升高,并且这种阻断作用可通过 SB-408124 预处理来调节。用 SB-408124(50 mM,5 μL/h)脑室内预处理可防止荷包牡丹碱 (BIC) 诱导的内源性葡萄糖生成 (EGP) 增加。
皮质自由素(CRF)不仅调节下丘脑-垂体-肾上腺轴的活动,而且作为一种神经递质在下丘脑外的大脑区域如杏仁核中起作用,涉及对压力的情绪反应。CRF系统向促食素神经元提供输入,并能调节促食能神经元在应激反应中的活动。一些数据显示食欲素a在消除厌恶记忆中的作用。食欲素系统被证明参与了与扩展的杏仁核结构有关的压力诱导行为,如杏仁核的中央核。目的是通过行为学试验研究食欲素- a拮抗剂SB-408124对捕食者应激大鼠的影响及其对杏仁核CRF水平的影响。本研究选用30只雄性Wistar大鼠。动物接受了一种选择性Orexin受体1型SB-408124鼻内拮抗剂。创伤后应激障碍是通过单一捕食者暴露来模拟的。一组10-12只老鼠和一条印度蟒蛇一起放在一个饲养箱里。暴露于捕食者7天后,采用开阔场地和高架交叉迷宫测试动物行为。采用“空地”试验研究了动物的自由运动活动。为了评估压力,我们使用了“高架交叉迷宫”测试。采用促肾上腺皮质激素释放因子(CRF)检测系统,采用固相ELISA法测定脑组织中CRF的浓度。鼻内注射SB-408124应激组,轻臂停留时间虽有所恢复,但未达到控制值,跑动次数恢复到对照水平,梳理动作次数较对照组和应激组均有所增加。生理盐水应激组的“空旷区”,嗅探和饲养次数减少,但窥视孔的次数增加。鼻内注射SB-408124 20µg应激组与生理盐水组相比,嗅探次数增加,窥孔次数减少。应激大鼠杏仁核匀浆中CRF水平较低(0.44±0.07 ng/mg蛋白,对照组为0.61±0.01 ng/mg蛋白)。鼻内给药SB-408124组无明显下降,杏仁核CRF水平为0.57±0.01 pg/mg蛋白。食欲素A拮抗剂SB-408124可减少精神创伤暴露后的焦虑。捕食者诱导的急性精神创伤暴露降低大鼠杏仁核的CRF水平。鼻内给予选择性食欲素1受体拮抗剂SB-408124使其恢复正常,并对动物行为具有抗焦虑作用[1] 。 此外,双侧PVN显微注射OX1R拮抗剂SB-408124导致HS摄入时MAP更大的降低(-16±5 mmHg) c |
||
| 酶活实验 |
SB-408124是一种非肽拮抗剂,其选择性比 OX2 受体高 50 倍,对 OX1 受体的全细胞和膜 Ki 值分别为 57 nM 和 27 nM。
[3H] b -674042全细胞结合试验[1] 在96孔Packard培养板中培养过夜后,丢弃培养基,细胞在含有150 mM NaCl、20 mM HEPES和0.5%牛血清白蛋白(pH 7.4)的缓冲液中25°C孵育60分钟。用[3H]SB-674042 (0.2-24 nM)培养细胞进行饱和度研究;总检测体积为250 μl。以0.1 M NaOH溶解细胞,以牛血清白蛋白(BSA)为标准,采用Bradford法(Bradford, 1976)测定蛋白质含量[1]。 加入[3H]SB-674042后1-60 min,测定[3H]SB-674042 (3 nM)的特异性结合,进行关联动力学研究。为了进行解离研究,细胞首先与[3H]SB-674042 (3 nM)孵育60 min,然后在加入3 μM SB-408124后,在2-120 min时测量特异性结合。通过用[3H]SB-674042 (3 nM)和一定浓度的测试化合物孵育细胞进行竞争研究。用250 μl冷水磷酸盐缓冲盐水冲洗细胞3次,终止所有实验。每孔加入体积为100 μl的Microscint 40,在室温下放置2小时。然后使用Packard Topcount测量细胞相关放射性,计数时间为2 min,孔−1。 [3H]SB-674042 membrane-based SPA binding assays/SB-674042膜基SPA结合试验[1] CHO-K1_OX1细胞膜(75 μg ml−1)在含有25 mM HEPES、2.5 mM MgCl2、0.5 mM EDTA和0.025%杆菌肽(pH 7.4)的缓冲液中,用wheatgerm-凝集素聚乙烯(WGA-PVT)闪烁接近实验(SPA)珠(5 mg ml−1)在4℃下振荡预偶联1小时。珠膜悬浮液在300 × g离心,在相同体积的室温实验缓冲液中重悬。取体积为100 μl的珠膜悬浮液与[3H]SB-674042 (5 nM)在96孔Packard Optiplate中以200 μl的总检测体积孵育,最终蛋白浓度为7.5 μg孔−1。以3 μM SB-408124为非特异性结合。实验板摇摇10分钟,室温孵育4小时,然后在Packard TopCount闪烁计数器上计数(计数时间2分钟,孔- 1)[1]。 通过在浓度范围为[3H]SB-674042 (0.1-20 nM)的条件下培养珠膜(相当于7.5 μg蛋白well - 1和2.5 mg珠ml - 1)进行饱和度研究。用Bradford方法(Bradford, 1976)测定蛋白质含量,以牛血清白蛋白为标准。在加入珠膜(相当于7.5 μg蛋白well - 1和2.5 mg珠ml - 1)后1 - 30分钟,通过测量[3H]SB-674042 (5 nM)的特异性结合进行了关联动力学研究。为了进行解离研究,头膜首先与[3H]SB-674042 (5 nM)孵育30分钟。然后在加入3 μM SB-408124后,在2-120分钟测量特异性结合。通过用[3H]SB-674042 (5 nM)和一定浓度的测试化合物孵育珠膜(相当于7.5 μg蛋白孔- 1和2.5 mg珠ml - 1)来进行竞争研究。 |
||
| 细胞实验 |
SB-408124 与下丘脑分泌素 1 型受体 (HcrtR1) 结合的 pKi 为 7.57。根据钙动员研究,SB-408124作为 OX1 受体的功能性拮抗剂,其亲和力比 OX2 受体的选择性高大约 50 倍。根据最近的一项研究,在给予 Orexin A 之前用 SB-401824 预处理大鼠星形胶质细胞的原代培养物时,Orexin A 对基础和毛喉素激活的 cAMP 产生的刺激作用显着降低。
orexin A/食欲素a诱导的脑神经元AVP mRNA表达的测定。[3] 下丘脑原代神经元培养物与载体对照或不同浓度的食欲素A (10 nM、100 nM、1 μM或10 μM)在dmme - hsps中孵育6小时。去除培养基,用冷PBS洗涤细胞,收集细胞,并进行RNA分离。Real-time PCR检测AVP mRNA水平。为了检测食欲素受体介导食欲素诱导的AVP升高,我们将1 μM orexin A与OX1R拮抗剂SB-408124(100µM)或OX2Ra TCS-OX2-29(100µM)共孵育6小时。通过实时定量PCR检测AVP mRNA水平。每组实验在24孔板上用3个培养孔进行,所有cDNA样品重复检测。整个实验重复了两到三次。数据归一化为GAPDH mRNA。 |
||
| 动物实验 |
|
||
| 参考文献 |
|
||
| 其他信息 |
The orexin system is involved in arginine vasopressin (AVP) regulation, and its overactivation has been implicated in hypertension. However, its role in salt-sensitive hypertension (SSHTN) is unknown. Here, we tested the hypothesis that hyperactivity of the orexin system in the paraventricular nucleus (PVN) contributes to SSHTN via enhancing AVP signaling. Eight-week-old male Dahl salt-sensitive (Dahl S) and age- and sex-matched Sprague-Dawley (SD) rats were placed on a high-salt (HS; 8% NaCl) or normal-salt (NS; 0.4% NaCl) diet for 4 wk. HS intake did not alter mean arterial pressure (MAP), PVN mRNA levels of orexin receptor 1 (OX1R), or OX2R but slightly increased PVN AVP mRNA expression in SD rats. HS diet induced significant increases in MAP and PVN mRNA levels of OX1R, OX2R, and AVP in Dahl S rats. Intracerebroventricular infusion of orexin A (0.2 nmol) dramatically increased AVP mRNA levels and immunoreactivity in the PVN of SD rats. Incubation of cultured hypothalamus neurons from newborn SD rats with orexin A increased AVP mRNA expression, which was attenuated by OX1R blockade. In addition, increased cerebrospinal fluid Na+ concentration through intracerebroventricular infusion of NaCl solution (4 µmol) increased PVN OX1R and AVP mRNA levels and immunoreactivity in SD rats. Furthermore, bilateral PVN microinjection of the OX1R antagonist SB-408124 resulted in a greater reduction in MAP in HS intake (-16 ± 5 mmHg) compared with NS-fed (-4 ± 4 mmHg) anesthetized Dahl S rats. These results suggest that elevated PVN OX1R activation may contribute to SSHTN by enhancing AVP signaling.NEW & NOTEWORTHY To our best knowledge, this study is the first to investigate the involvement of the orexin system in salt-sensitive hypertension. Our results suggest that the orexin system may contribute to the Dahl model of salt-sensitive hypertension by enhancing vasopressin signaling in the hypothalamic paraventricular nucleus.[3]
1. This study characterises the binding of a novel nonpeptide antagonist radioligand, [(3)H]SB-674042 (1-(5-(2-fluoro-phenyl)-2-methyl-thiazol-4-yl)-1-((S)-2-(5-phenyl-(1,3,4)oxadiazol-2-ylmethyl)-pyrrolidin-1-yl)-methanone), to the human orexin-1 (OX(1)) receptor stably expressed in Chinese hamster ovary (CHO) cells in both a whole cell assay and in a cell membrane-based scintillation proximity assay (SPA) format. 2. Specific binding of [(3)H]SB-674042 was saturable in both whole cell and membrane formats. Analyses suggested a single high-affinity site, with K(d) values of 3.76+/-0.45 and 5.03+/-0.31 nm, and corresponding B(max) values of 30.8+/-1.8 and 34.4+/-2.0 pmol mg protein(-1), in whole cell and membrane formats, respectively. Kinetic studies yielded similar K(d) values. 3. Competition studies in whole cells revealed that the native orexin peptides display a low affinity for the OX(1) receptor, with orexin-A displaying a approximately five-fold higher affinity than orexin-B (K(i) values of 318+/-158 and 1516+/-597 nm, respectively). 4. SB-334867, SB-408124 (1-(6,8-difluoro-2-methyl-quinolin-4-yl)-3-(4-dimethylamino-phenyl)-urea) and SB-410220 (1-(5,8-difluoro-quinolin-4-yl)-3-(4-dimethylamino-phenyl)-urea) all displayed high affinity for the OX(1) receptor in both whole cell (K(i) values 99+/-18, 57+/-8.3 and 19+/-4.5 nm, respectively) and membrane (K(i) values 38+/-3.6, 27+/-4.1 and 4.5+/-0.2 nm, respectively) formats. 5. Calcium mobilisation studies showed that SB-334867, SB-408124 and SB-410220 are all functional antagonists of the OX(1) receptor, with potencies in line with their affinities, as measured in the radioligand binding assays, and with approximately 50-fold selectivity over the orexin-2 receptor. 6. These studies indicate that [(3)H]SB-674042 is a specific, high-affinity radioligand for the OX(1) receptor. The availability of this radioligand will be a valuable tool with which to investigate the physiological functions of OX(1) receptors.[1] |
| 分子式 |
C19H19CLF2N4O
|
|
|---|---|---|
| 分子量 |
392.83
|
|
| 精确质量 |
392.121
|
|
| CAS号 |
1431697-90-3
|
|
| 相关CAS号 |
SB-408124; 288150-92-5
|
|
| PubChem CID |
71576692
|
|
| 外观&性状 |
White to gray solid powder
|
|
| tPSA |
57.3
|
|
| 氢键供体(HBD)数目 |
3
|
|
| 氢键受体(HBA)数目 |
5
|
|
| 可旋转键数目(RBC) |
3
|
|
| 重原子数目 |
27
|
|
| 分子复杂度/Complexity |
484
|
|
| 定义原子立体中心数目 |
0
|
|
| InChi Key |
DIHXPSGMLOETTI-UHFFFAOYSA-N
|
|
| InChi Code |
InChI=1S/C19H18F2N4O.ClH/c1-11-8-17(15-9-12(20)10-16(21)18(15)22-11)24-19(26)23-13-4-6-14(7-5-13)25(2)3;/h4-10H,1-3H3,(H2,22,23,24,26);1H
|
|
| 化学名 |
1-(6,8-difluoro-2-methylquinolin-4-yl)-3-[4-(dimethylamino)phenyl]urea;hydrochloride
|
|
| 别名 |
|
|
| HS Tariff Code |
2934.99.9001
|
|
| 存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。 |
|
| 运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
| 溶解度 (体外实验) |
|
|||
|---|---|---|---|---|
| 溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
| 制备储备液 | 1 mg | 5 mg | 10 mg | |
| 1 mM | 2.5456 mL | 12.7282 mL | 25.4563 mL | |
| 5 mM | 0.5091 mL | 2.5456 mL | 5.0913 mL | |
| 10 mM | 0.2546 mL | 1.2728 mL | 2.5456 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
![]() |
|---|
![]() |
![]() ![]() |