Succinic acid tromethamine

别名: Tris succinate; 85169-32-0; 84540-64-7; Di(tris[hydroxymethyl]aminomethane) succinate; Succinic acid, compound with 2-amino-2-(hydroxymethyl)propane-1,3-diol (1:2); 2-amino-2-(hydroxymethyl)propane-1,3-diol;butanedioic acid; EINECS 285-975-2; EINECS 283-159-0; 三-琥珀酸
目录号: V44545 纯度: ≥98%
琥珀酸氨丁三醇是一种有效的口服生物活性抗焦虑(抗焦虑)剂。
Succinic acid tromethamine CAS号: 84540-64-7
产品类别: New3
产品仅用于科学研究,不针对患者销售
规格 价格
500mg
1g
Other Sizes

Other Forms of Succinic acid tromethamine:

  • 琥珀酸
  • 琥珀酸钠
  • 丁二酸二钠
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
产品描述
琥珀酸氨丁三醇是一种有效的口服生物活性抗焦虑(抗焦虑)剂。琥珀酸氨丁三醇是克雷布斯循环的中间产物。琥珀酸氨丁三醇用作食品、化学和制药行业中许多重要工业化学品的前体。
生物活性&实验参考方法
靶点
Microbial Metabolite; Endogenous Metabolite; Flavoring Agents; Alters several flavor and/or taste characteristics; Food additives; Fragrance Ingredients; Cosmetics -> Buffering; Environmental transformation -> Pesticide transformation products (metabolite, successor)
体外研究 (In Vitro)
农业碳水化合物的发酵产生琥珀酸氨丁三醇[2]。
琥珀酸被认为是一种重要的平台化学品。采用响应面法(RSM)通过中心复合设计(CCD)优化了产琥珀酸放线杆菌BE-1菌株的琥珀酸发酵。预测了琥珀酸的优化生产,并研究了葡萄糖、酵母提取物和碳酸镁之间的相互作用。因此,开发了一个预测琥珀酸生产浓度的模型。方差分析(ANOVA)证实了模型的准确性,验证实验进一步证明了模型的有效性,实验表明实际值和预测值之间的百分比误差在3.02%到6.38%之间。此外,观察到酵母提取物和碳酸镁之间的相互作用具有统计学意义。综上所述,RSM是优化培养基成分和研究相互作用效应的有效和有用的方法,可以为使用产琥珀酸A.菌株BE-1进行琥珀酸放大发酵提供有价值的信息[1]。
体内研究 (In Vivo)
琥珀酸氨丁三醇(3、6 mg/kg;口服)可增加雄性小鼠进入张开臂的百分比以及在张开臂中花费的时间 [3]。琥珀酸氨丁三醇(3、6、12 mg/kg;腹腔注射)在分娩 5 分钟后显着增加食物摄入量,并在给药后 40 分钟记录直肠温度,剂量为 1.5 mg/kg 琥珀酸,可预防应激引起的体温过高[3]。
动物实验
The putative anxiolytic activity of succinic acid was examined in male mice by using a number of experimental paradigms of anxiety and compared with that of the known anxiolytic compound diazepam. Use of the elevated plus-maze test revealed that diazepam (1.0, 2.0 and 4.0 mg/kg, PO) or succinic acid (3.0 or 6.0 mg/kg, PO) increased the percentage of entries into open arms and of time spent on open arms. In novel food consumption test, succinic acid (3.0, 6.0, and 12.0 mg/kg, IP) caused significant increases in food intake during 5 min when compared with the vehicle. In the stress-induced hyperthermia test, 40 min after drug administration rectal temperature was measured, succinic acid at dose of 1.5 mg/kg, inhibited stress-induced hyperthermia. Thus, these findings indicated that, in contrast with diazepam, succinic acid exhibits anxiolytic-like effect.[3]
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Succinic acid occurs normally in human urine (1.9-8.8 mg/L).
Metabolism / Metabolites
Succinic acid is a normal intermediary metabolite and a constituent of the citric acid cycle. It is readily metabolized when administered to animals, but may be partly excreted unchanged in the urine if large doses are fed.

Succinic acid can be converted into fumaric acid by oxidation via succinate dehydrogenase.
Agrochemical Transformations
Butanedioic acid is a known environmental transformation product of Sulcotrione.
Succinic acid is a known environmental transformation product of Linuron.
毒性/毒理 (Toxicokinetics/TK)
Toxicity Summary
Succinate can inhibit the activities of α-KG–dependent oxygenases (KDMs) and the TET family of 5-methlycytosine (5mC) hydroxylases. Succinate also mediates allosteric inhibition of hypoxia inducible factor (HIF) prolyl hydroxylases (PHDs). Inhibition of HIF PHDs leads to activation of HIF-mediated pseudohypoxic response, whereas inhibition of KDMs and TET family of 5mC hydroxylases causes epigenetic alterations that ultimately cause cancer. Succination of KEAP1 in FH deficiency results in the constitutive activation of the antioxidant defense pathway mediated by NRF2, conferring a reductive milieu that promotes cell proliferation. Succination of the Krebs cycle enzyme Aco2 impairs aconitase activity in Fh1-deficient MEFs. Succination also causes irreversible inactivation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
Health Effects
At acute doses or exposures succinic acid is a skin irritant. Chronically high doses of succinate can lead to succinylation or succination of a variety of enzymes. Partial succinate dehydrogenase deficiency (15% to 50% of normal reference enzyme activity) in skeletal muscle leads to elevated succinate levels and causes mitochondrial myopathy with various symptoms, for example, brain involvement, cardiomyopathy, and/or exercise intolerance.
Exposure Routes
Eye contact, Inhalation, Ingestion.
Symptoms
Acute Exposure: the clinical signs of acute toxicity are weakness and diarrhea.
Adverse Effects
Neurotoxin - Other CNS neurotoxin
View More

Toxicity Data
Acute oral toxicity (LD50): 2260 mg/kg [Rat].


Treatment
EYES: irrigate opened eyes for several minutes under running water. INGESTION: do not induce vomiting. Rinse mouth with water (never give anything by mouth to an unconscious person). Seek immediate medical advice. SKIN: should be treated immediately by rinsing the affected parts in cold running water for at least 15 minutes, followed by thorough washing with soap and water. If necessary, the person should shower and change contaminated clothing and shoes, and then must seek medical attention. INHALATION: supply fresh air. If required provide artificial respiration.
Human Toxicity Excerpts
/OTHER TOXICITY INFORMATION/ Primary irritant effects are present with a number of ... /aliphatic dicarboxylic/ acids, particularly in concentrated solution or as dusts- sensitization is rare. /Aliphatic dicarboxylic acids/ International Labour Office. Encyclopedia of Occupational Health and Safety. Volumes I and II. New York: McGraw-Hill Book Co., 1971., p. 30
Non-Human Toxicity Excerpts /LABORATORY ANIMALS: Acute Exposure/ Succinic acid is slight skin irritant and a strong eye irritant in rats. Application of 750 ug of succinic acid as a 15% solution produced severe damage in rabbit eyes. The clinical signs of acute toxicity in rats are weakness and diarrhea.

/LABORATORY ANIMALS: Acute Exposure/ Large iv doses of sodium succinate produced vomiting and diarrhea in cats... .

/LABORATORY ANIMALS: Subchronic or Prechronic Exposure/ Rats/Fischer (F344) males and females,10 per group /were exposed for/ 13 weeks ad libitum /to/ 0, 0.3, 0.6, 1.25, 2.5, 5, 10% monosodium succinate, purity 100.2%. ...Severe suppression of body weight gain occurred in rats in the 10% group, and all of the rats in this group died during the first 4 weeks of the experiment. However, in the other dose groups all of the rats survived to the end of the experiment. Suppression of body weight gain was observed at >/=2.5%. The volume of drinking water consumed was very small in the highest dose groups, although it was larger in the 5% group than in the other groups. No specific dose-related changes were observed in any parameters in the hematological and biochemical investigations. Rats that died during the experiment were severely emaciated. However, no toxic lesions caused by the test substance were found in any organs of these rats histopathologically, although atrophy of the organs was observed. No specific lesions were observed histologically in any of the other test groups. On the basis of body weight depression, the maximum tolerated dose of monosodium succinate was determined to be approximately 2-2.5% when given in the drinking water.
Non-Human Toxicity Values
LD50 Rat oral 2260 mg/kg

参考文献

[1]. Optimization of succinic acid fermentation with Actinobacillus succinogenes by response surface methodology (RSM). J Zhejiang Univ Sci B. 2012 Feb;13(2):103-10.

[2]. The production of propionic acid by decarboxylation of succinic acid in a bacterial fermentation. Biochem J. 1948;42(1):ii.

[3]. Si Wei Chen, Anxiolytic-like effect of succinic acid in mice. Life Sci. 2003 Nov 7;73(25):3257-64.

其他信息
Succinic acid appears as white crystals or shiny white odorless crystalline powder. pH of 0.1 molar solution: 2.7. Very acid taste. (NTP, 1992) National Toxicology Program, Institute of Environmental Health Sciences, National Institutes of Health (NTP). 1992. National Toxicology Program Chemical Repository Database. Research Triangle Park, North Carolina.

Succinic acid is an alpha,omega-dicarboxylic acid resulting from the formal oxidation of each of the terminal methyl groups of butane to the corresponding carboxy group. It is an intermediate metabolite in the citric acid cycle. It has a role as a nutraceutical, a radiation protective agent, an anti-ulcer drug, a micronutrient and a fundamental metabolite. It is an alpha,omega-dicarboxylic acid and a C4-dicarboxylic acid. It is a conjugate acid of a succinate(1-).

A water-soluble, colorless crystal with an acid taste that is used as a chemical intermediate, in medicine, the manufacture of lacquers, and to make perfume esters. It is also used in foods as a sequestrant, buffer, and a neutralizing agent. (Hawley's Condensed Chemical Dictionary, 12th ed, p1099; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1851)

Succinic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Succinic Acid has been reported in Camellia sinensis, Phomopsis velata, and other organisms with data available.

Succinic acid is a dicarboxylic acid. The anion, succinate, is a component of the citric acid cycle capable of donating electrons to the electron transfer chain. Succinic acid is created as a byproduct of the fermentation of sugar. It lends to fermented beverages such as wine and beer a common taste that is a combination of saltiness, bitterness and acidity. Succinate is commonly used as a chemical intermediate, in medicine, the manufacture of lacquers, and to make perfume esters. It is also used in foods as a sequestrant, buffer, and a neutralizing agent. Succinate plays a role in the citric acid cycle, an energy-yielding process and is metabolized by succinate dehydrogenase to fumarate. Succinate dehydrogenase (SDH) plays an important role in the mitochondria, being both part of the respiratory chain and the Krebs cycle. SDH with a covalently attached FAD prosthetic group, binds enzyme substrates (succinate and fumarate) and physiological regulators (oxaloacetate and ATP). Oxidizing succinate links SDH to the fast-cycling Krebs cycle portion where it participates in the breakdown of acetyl-CoA throughout the whole Krebs cycle. Succinate can readily be imported into the mitochondrial matrix by the n-butylmalonate- (or phenylsuccinate-) sensitive dicarboxylate carrier in exchange with inorganic phosphate or another organic acid, e.g. malate. (A3509) Mutations in the four genes encoding the subunits of succinate dehydrogenase are associated with a wide spectrum of clinical presentations (i.e.: Huntington's disease. (A3510). Succinate also acts as an oncometabolite. Succinate inhibits 2-oxoglutarate-dependent histone and DNA demethylase enzymes, resulting in epigenetic silencing that affects neuroendocrine differentiation.

A water-soluble, colorless crystal with an acid taste that is used as a chemical intermediate, in medicine, the manufacture of lacquers, and to make perfume esters. It is also used in foods as a sequestrant, buffer, and a neutralizing agent.
View More

Drug Indication
For nutritional supplementation, also for treating dietary shortage or imbalance


Therapeutic Uses
/EXPTL THER/ Succinic acid (100 mM) significantly inhibited systemic anaphylaxis induced by compound 48/80 /a potent mast cell degranulator/ in mice and dose-dependently inhibited local anaphylaxis activated by anti-dinitrophenyl IgE. Further 10 and 100 mM significantly inhibited histamine release from rat peritoneal mast cells activated by compound 48/80 or anti-dinitrophenyl IgE. In addition succinic acid (0.1 and 1 mM) had a significant inhibitory effect on anti-dinitrophenyl IgE-induced tumor necrosis factor-alpha secretion from rat peritoneal mast cells. The level of cyclic AMP in rat peritoneal mast cells, when succinic acid (100 mM) was added, transiently and significantly increased about 4 times compared with that of basal cells. These results suggest a possible use of succinic acid in managing mast cell-dependent anaphylaxis.
Mechanism of Action
Succinate is an essential component of the Krebs or citric acid cycle and serves an electron donor in the production of fumaric acid and FADH2. It also has been shown to be a good "natural" antibiotic because of its relative acidic or caustic nature (high concentrations can even cause burns). Succinate supplements have been shown to help reduce the effects of hangovers by activating the degradation of acetaldehyde - a toxic byproduct of alcohol metabolism - into CO2 and H2O through aerobic metabolism. Succinic acid has been shown to stimulate neural system recovery and bolster the immune system. Claims have also been made that it boosts awareness, concentration and reflexes.
Sources/Uses
Found in fossils, fungi, and lichens; [Merck Index] Present in nearly all plant and animal tissues; Used to make lacquers, dyes, esters for perfumes, alkyd resins, pharmaceuticals, plasticizers, lubricants, and pesticides; Also used in photography, as a sequestrant in foods, a buffering and neutralizing agent, for radiation dosimetry, and to promote plant growth and increased yields in food crops

Uses of succinic acid range from scientific applications such as radiation dosimetry and standard buffer solutions to applications in agriculture, food, medicine, plastics, cosmetics, textiles, plating, and waste-gas scrubbing Kirk-Othmer Encyclopedia of Chemical Technology. 3rd ed., Volumes 1-26. New York, NY: John Wiley and Sons, 1978-1984., p. V21 848

Succinic acid is used as starting material in the manufacture of alkyd resins, dyes, pharmaceuticals, and pesticides. Reaction with glycols gives polyesters; esters formed by reaction with monoalcohols are important plasticizers and lubricants.

In the growing of food, it is a biogenic stimulant leading to faster plant growth and increased yields.

Succinic acid is a precursor to some specialized polyesters. It is also a component of some alkyd resins. Succinic acid is used in the food and beverage industry, primarily as an acidity regulator. It is also sold as a food additive and dietary supplement, and is generally recognized as safe by the US FDA.
Methods of Manufacturing
Hydrogenation of maleic acid, maleic anhydride, or fumaric acid produces good yields of succinic acid.

1,4-Butanediol can be oxidized to succinic acid in several ways: (1) with O2 in an aqueous solution of an alkaline-earth hydroxide at 90-110 °C in the presence of Pd-C; (2) by ozonolysis in aqueous acetic acid; or (3) by reaction with N2O4 at low temperature.

Succinic acid can ... be obtained by phase-transfer-catalyzed reaction of 2-haloacetates, electrolytic dimerization of bromoacetic acid or ester, oxidation of 3-cyanopropanal, and fermentation of n-alkanes.

*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C4H6O4.2[C4H11NO3]
分子量
360.35812
精确质量
360.174
CAS号
84540-64-7
相关CAS号
Succinic acid;110-15-6; 84540-64-7 (Succinic acid tromethamine); 150-90-3 (Disodium succinate); 26776-24-9;14047-56-4 (Succinic acid sodium)
PubChem CID
3086186
外观&性状
Typically exists as solid at room temperature
沸点
633.5ºC at 760 mmHg
熔点
138-141ºC
闪点
336.9ºC
tPSA
248.02
氢键供体(HBD)数目
10
氢键受体(HBA)数目
12
可旋转键数目(RBC)
9
重原子数目
24
分子复杂度/Complexity
147
定义原子立体中心数目
0
SMILES
C(CC(=O)O)C(=O)O.C(C(CO)(CO)N)O.C(C(CO)(CO)N)O
InChi Key
CFJZQNZZGQDONE-UHFFFAOYSA-N
InChi Code
InChI=1S/2C4H11NO3.C4H6O4/c2*5-4(1-6,2-7)3-8;5-3(6)1-2-4(7)8/h2*6-8H,1-3,5H2;1-2H2,(H,5,6)(H,7,8)
化学名
2-amino-2-(hydroxymethyl)propane-1,3-diol;butanedioic acid
别名
Tris succinate; 85169-32-0; 84540-64-7; Di(tris[hydroxymethyl]aminomethane) succinate; Succinic acid, compound with 2-amino-2-(hydroxymethyl)propane-1,3-diol (1:2); 2-amino-2-(hydroxymethyl)propane-1,3-diol;butanedioic acid; EINECS 285-975-2; EINECS 283-159-0;
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
溶解度 (体内实验)
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。

注射用配方
(IP/IV/IM/SC等)
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO 50 μL Tween 80 850 μL Saline)
*生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。
注射用配方 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO 400 μL PEG300 50 μL Tween 80 450 μL Saline)
注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO 900 μL Corn oil)
示例: 注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。
View More

注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO 900 μL (20% SBE-β-CD in Saline)]
*20% SBE-β-CD in Saline的制备(4°C,储存1周):将2g SBE-β-CD (磺丁基-β-环糊精) 溶解于10mL生理盐水中,得到澄清溶液。
注射用配方 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (如: 500 μL 2-Hydroxypropyl-β-cyclodextrin (羟丙基环胡精) 500 μL Saline)
注射用配方 6: DMSO : PEG300 : Castor oil : Saline = 5 : 10 : 20 : 65 (如: 50 μL DMSO 100 μL PEG300 200 μL Castor oil 650 μL Saline)
注射用配方 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (如: 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
注射用配方 8: 溶解于Cremophor/Ethanol (50 : 50), 然后用生理盐水稀释。
注射用配方 9: EtOH : Corn oil = 10 : 90 (如: 100 μL EtOH 900 μL Corn oil)
注射用配方 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL EtOH 400 μL PEG300 50 μL Tween 80 450 μL Saline)


口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠)
口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素)
示例: 口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。
View More

口服配方 3: 溶解于 PEG400 (聚乙二醇400)
口服配方 4: 悬浮于0.2% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 5: 溶解于0.25% Tween 80 and 0.5% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 6: 做成粉末与食物混合


注意: 以上为较为常见方法,仅供参考, InvivoChem并未独立验证这些配方的准确性。具体溶剂的选择首先应参照文献已报道溶解方法、配方或剂型,对于某些尚未有文献报道溶解方法的化合物,需通过前期实验来确定(建议先取少量样品进行尝试),包括产品的溶解情况、梯度设置、动物的耐受性等。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.7750 mL 13.8750 mL 27.7500 mL
5 mM 0.5550 mL 2.7750 mL 5.5500 mL
10 mM 0.2775 mL 1.3875 mL 2.7750 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

联系我们