Taurolithocholic acid

别名: Lithocholic acid; taurine conjugate; TAUROLITHOCHOLIC ACID; 516-90-5; 2-[[(4R)-4-[(3R,5R,8R,9S,10S,13R,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]ethanesulfonic acid; CHEBI:36259; DTXSID20965925; N-(3alpha-hydroxy-5beta-cholan-24-oyl)-taurine; ST 24:1;O2;T; Acid, Taurolithocholic; Taurolithocholic acid; Lithocholyltaurine 牛磺石胆酸-D4酸
目录号: V6840 纯度: ≥98%
牛磺石胆酸是一种新型有效的胆汁酸盐
Taurolithocholic acid CAS号: 516-90-5
产品类别: New1
产品仅用于科学研究,不针对患者销售
规格 价格
500mg
1g
Other Sizes

Other Forms of Taurolithocholic acid:

  • Taurolithocholic acid sodium salt
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
产品描述
牛磺石胆酸是一种新型有效的胆汁酸盐
生物活性&实验参考方法
靶点
Human Endogenous Metabolite
体外研究 (In Vitro)
在低剂量 (5 µM) 下,Taurolithocholic acid /牛磺石胆酸 (TLCA) 往往会使 PKC e 亚型的膜相关部分提高 44.1% ± 40.2%[1]。移动 PKC 同工型的激活需要 PKC 的 epsilon 同工型选择性易位至肝细胞膜,这是由 TLCA (10 µM) 诱导的[1]。
蛋白激酶C(PKC)同工酶家族在肝细胞分泌的调节中起着关键作用。疏水性和胆汁淤积性胆汁酸,牛磺酸胆酸(TLCA),在分离的肝细胞中充当强效的钙离子激动剂。然而,其对PKC亚型的影响尚未阐明。在这里,我们研究了低微摩尔浓度的TLCA对PKC亚型分布和膜相关PKC活性的影响。使用蛋白质印迹和免疫荧光技术在短期培养的分离大鼠肝细胞中确定PKC亚型的分布。放射化学法测定PKC活性。Taurolithocholic acid /TLCA(10微摩尔/升)诱导εPKC选择性易位47.9%+/-20.5%(与对照组相比,P<.02;n=7),但α-、δ-和ζPKC未选择性易位至肝细胞膜,而佛波醇酯佛波醇12-肉豆蔻酸酯13-乙酸酯(PMA)(1微摩尔/L)导致所有可移动异构体α-、Δ-和εPKC易位,如免疫印迹所示。免疫荧光研究表明,TLCA(10微摩尔/升)选择性地将ε-PKC转运到分离的大鼠肝细胞联的小管膜,但PMA(1微摩尔/L)主要转运到细胞内和基底外侧膜。TLCA(10μmol/L)和PMA(1μmol/L)均能刺激膜结合PKC活性60.5%+/-45。分别为8%(与对照组相比P<0.05;n=5)和72.4%+/-37.2%(P<0.05;n=5)。较低浓度(5微摩尔/升)的TLCA效果较差。由于εPKC的激活与囊泡介导的分泌细胞膜蛋白靶向和插入的损伤有关,因此推测TLCA通过激活小管膜上的εPKC来降低肝细胞的胆汁分泌能力是有吸引力的。[1]
分离的大鼠肝细胞中PI3K依赖性PKB(PKB/Akt)活性[2]
磷酸化PKB(Ser-473)的量是PI3K通路激活的敏感读数(27,32),在短期培养中,肝细胞中的Taurolithocholic acid /牛磺酸/TLCA(5μmol/l)显著增强(图7),60分钟后达到对照组的194±46%(与对照组相比p<0.005;与TUDCA相比p<0.05;与TCA相比p<0.01)。相比之下,TUDCA(10μmol/升)仅短暂增加PKB活性,而TCA(10µmol/升,在所选实验条件下没有影响(图7)。因此,TLCA在体外显著影响了分离肝细胞中的PI3K活性,而TUDCA在低微摩尔浓度下给药时仅对PI3K通路产生轻微的短暂影响。
体内研究 (In Vivo)
大鼠肝细胞对和灌注大鼠肝脏中的Taurolithocholic acid /牛磺石胆酸 (TLCA) 通过 PI3K 依赖性机制表现出胆汁淤积作用 [2]。
Taurolithocholic acid /牛磺酸胆酸(TLCA)是一种强效的胆汁淤积剂。我们最近的工作表明,TLCA通过蛋白激酶Cepsilon(PKCepsilon)依赖性机制损害肝胆分泌、运输蛋白插入肝细胞顶膜和胆汁流动。磷脂酰肌醇3-激酶(PI3K)的产物刺激PKCε。我们研究了PI3K在离体灌流大鼠肝脏(IPRL)和离体大鼠肝细胞偶联物(IRHC)中对TLCA诱导的胆汁淤积的作用。在IPRL中,TLCA(10微摩尔/升)使胆汁流量受损51%,使辣根过氧化物酶(囊泡分泌的标志物)的胆汁分泌受损46%,Mrp2底物2,4-二硝基苯基-S-谷胱甘肽受损95%,并刺激PI3K依赖性蛋白激酶B(PI3K活性的标志)受损154%,使PKEpsilon膜结合受损23%。在IRHC中,TLCA(2.5微摩尔/升)使荧光胆汁酸(胆酰甘氨酰荧光素)的小管分泌受损50%。选择性PI3K抑制剂渥曼青霉素(100 nmol/升)和抗胆固醇胆汁酸牛磺脱氧胆酸(TUDCA,25微摩尔/升)独立和相加地逆转了TLCA对IPRL中胆汁流量、胞吐、有机阴离子分泌、PI3K依赖性蛋白激酶B活性和PKCε膜结合的影响。渥曼青霉素还逆转了IRHC中受损的胆汁酸分泌。这些数据强烈表明,TLCA通过PI3K和PKCε依赖的机制发挥胆汁淤积作用,这些机制被牛磺脱氧胆酸以PI3K非依赖的方式逆转[2]。
酶活实验
通过免疫印迹技术测定分离的大鼠肝细胞中PKB/Akt的活性。简而言之,在接种后4小时(见上文),细胞与Taurolithocholic acid /牛磺胆酸/TLCA(5μmol/l;浓度>5μmol/l时,TLCA在短期培养中对分离的肝细胞造成可见损伤)、TUDCA(10μmol/l)、TCA(10µmol/l)或仅使用载体Me2SO(对照,0.1%,v/v)孵育5、15、30和60分钟。然后将培养皿放在冰上,刮取细胞并立即冷冻(-80°C)。将休克冷冻细胞在冰冷的裂解缓冲液(1ml/100mg)中均质化,并如上所述进行处理[2]。
动物实验
Bile acid secretion by IRHC was assessed by measuring the hepatocellular uptake and secretion of 1 μmol/liter cholylglycylamido fluorescein (CGamF) into the canalicular space as previously described. CGamF was synthesized according to Schteingart et al. and was kindly provided by Dr. Alan Hofmann. Four hours after isolation, hepatocytes (on coverslips) were briefly transferred to HEPES buffer. Then, cells were pretreated for 15 min at 37 °C with (i) Me2SO (0.1%, v/v), (ii) 100 nmol/liter wortmannin and Me2SO, (iii) Me2SO for 5 min, and 2.5 μm Taurolithocholic acid /TLCA (in Me2SO, 0.1%, v/v) for 10 min, (iv) 100 nmol/liter wortmannin and Me2SO for 5 min, and 100 nmol/liter wortmannin and 2.5 μm Taurolithocholic acid /TLCA (in Me2SO, 0.1%, v/v) for 10 min, (v) Me2SO for 5 min and 5 μmol/liter Taurolithocholic acid /TLCA (in Me2SO, 0.1%, v/v) for 10 min, and (vi) 100 nmol/liter wortmannin and Me2SO for 5 min, and 100 nmol/liter wortmannin and 5 μmol/liter Taurolithocholic acid /TLCA for 10 min. Cells were then transferred for 5 min to HEPES buffer containing 1 μmol/liter fluorescent CGamF at 37 °C to allow adequate loading of the fluorescent bile acid and transferred back for 10 min to their previous dishes (i-vi). Hepatocyte secretion was stopped by placing coverslips in ice-cold HEPES buffer on ice, and cells were viewed immediately on a Zeiss LSM 510 microscope (Thornwood, NY). Laser settings were optimized for a dynamic range to avoid saturation of the fluorescence. The same settings were used for all conditions. Cells were analyzed on the confocal laser scanning microscope by one investigator (C. J. Soroka) who was blinded to the experimental conditions. Couplets were selected based upon the presence of a well defined canalicular space as determined under bright field optics. Images were then acquired with rapid scanning to avoid quenching of the fluorescence. Quantitation of uptake (uptake = (F° cell + F° can)/μm2) and secretion (% secretion = [F° can/(F° cell + F° can)] × 100) of CGamF was performed as previously published, except that NIH Image software was used.[2]
参考文献

[1]. Modulation of protein kinase C by taurolithocholic acid in isolated rat hepatocytes. Hepatology. 1999 Feb;29(2):477-82.

[2]. Taurolithocholic acid exerts cholestatic effects via phosphatidylinositol 3-kinase-dependent mechanisms in perfused rat livers and rat hepatocyte couplets. J Biol Chem. 2003 May 16;278(20):17810-8.

其他信息
Taurolithocholic acid is the bile acid taurine conjugate of lithocholic acid. It has a role as a human metabolite. It is a monocarboxylic acid amide and a bile acid taurine conjugate. It is functionally related to a lithocholic acid. It is a conjugate acid of a taurolithocholate.
Taurolithocholic acid has been reported in Homo sapiens, Bos taurus, and Aeromonas veronii with data available.
A bile salt formed in the liver from lithocholic acid conjugation with taurine, usually as the sodium salt. It solubilizes fats for absorption and is itself absorbed. It is a cholagogue and choleretic. Sodium taurolithocholate is a bile acid. It is functionally related to a taurolithocholic acid.
See also: Sodium taurolithocholate (annotation moved to).
In the present study, co-administration of a PI3K inhibitor not only reversed TLCA-induced impairment of bile secretion but also cellular damage as determined by lactate dehydrogenase release (Table I). The improvement in bile flow alone could not account for this effect since TUDCA also improved secretion in TLCA-treated livers but failed to abolish the cell damage induced by TLCA in IPRL. Future studies will be necessary to elucidate the role of PI3K in TLCA-induced acute liver cell damage.
The present data suggest that PI3K represents a potential target of future anticholestatic treatment strategies. It should be mentioned, however, that PI3K may activate a survival pathway in rat hepatocytes treated with the hydrophobic bile acid, taurochenodeoxycholic acid (TCDCA) which protects liver cells from TCDCA-induced damage in vitro as well as in vivo (Rust C, unpublished observation). Interestingly, the taurochenodeoxycholic acid-induced survival pathway did not involve PKB activation in vitro. Thus, different bile acids may exert differential effects on PI3K- and PKB-mediated processes in liver cells. It remains to be clarified whether involvement of different PI3K isoforms or action in different subcellular compartments may contribute to these diverse effects of bile acids on PI3K and PKB.
In summary, the present study demonstrates that TLCA-induced impairment of bile flow, hepatobiliary exocytosis, secretion of bile acids, and other organic anions as well as liver cell damage is mediated by PI3K- and putatively PKCε-dependent mechanisms. TUDCA reversed the inhibitory effects of TLCA on bile secretion by a PI3K-independent mechanism.[2]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C26H45NO5S
分子量
483.7
精确质量
483.302
元素分析
C, 64.56; H, 9.38; N, 2.90; O, 16.54; S, 6.63
CAS号
516-90-5
相关CAS号
6042-32-6; 516-90-5
PubChem CID
439763
外观&性状
Typically exists as solid at room temperature
密度
1.169g/cm3
熔点
81-82ºC
折射率
1.54
LogP
6.347
tPSA
115.57
氢键供体(HBD)数目
3
氢键受体(HBA)数目
5
可旋转键数目(RBC)
7
重原子数目
33
分子复杂度/Complexity
825
定义原子立体中心数目
9
SMILES
CC(CCC(=O)NCCS(=O)(=O)O)C1CCC2C1(CCC3C2CCC4C3(CCC(C4)O)C)C
InChi Key
QBYUNVOYXHFVKC-GBURMNQMSA-N
InChi Code
InChI=1S/C26H45NO5S/c1-17(4-9-24(29)27-14-15-33(30,31)32)21-7-8-22-20-6-5-18-16-19(28)10-12-25(18,2)23(20)11-13-26(21,22)3/h17-23,28H,4-16H2,1-3H3,(H,27,29)(H,30,31,32)/t17-,18-,19-,20+,21-,22+,23+,25+,26-/m1/s1
化学名
2-[[(4R)-4-[(3R,5R,8R,9S,10S,13R,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]ethanesulfonic acid
别名
Lithocholic acid; taurine conjugate; TAUROLITHOCHOLIC ACID; 516-90-5; 2-[[(4R)-4-[(3R,5R,8R,9S,10S,13R,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]ethanesulfonic acid; CHEBI:36259; DTXSID20965925; N-(3alpha-hydroxy-5beta-cholan-24-oyl)-taurine; ST 24:1;O2;T; Acid, Taurolithocholic; Taurolithocholic acid; Lithocholyltaurine
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
溶解度 (体内实验)
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。

注射用配方
(IP/IV/IM/SC等)
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO 50 μL Tween 80 850 μL Saline)
*生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。
注射用配方 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO 400 μL PEG300 50 μL Tween 80 450 μL Saline)
注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO 900 μL Corn oil)
示例: 注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。
View More

注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO 900 μL (20% SBE-β-CD in Saline)]
*20% SBE-β-CD in Saline的制备(4°C,储存1周):将2g SBE-β-CD (磺丁基-β-环糊精) 溶解于10mL生理盐水中,得到澄清溶液。
注射用配方 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (如: 500 μL 2-Hydroxypropyl-β-cyclodextrin (羟丙基环胡精) 500 μL Saline)
注射用配方 6: DMSO : PEG300 : Castor oil : Saline = 5 : 10 : 20 : 65 (如: 50 μL DMSO 100 μL PEG300 200 μL Castor oil 650 μL Saline)
注射用配方 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (如: 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
注射用配方 8: 溶解于Cremophor/Ethanol (50 : 50), 然后用生理盐水稀释。
注射用配方 9: EtOH : Corn oil = 10 : 90 (如: 100 μL EtOH 900 μL Corn oil)
注射用配方 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL EtOH 400 μL PEG300 50 μL Tween 80 450 μL Saline)


口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠)
口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素)
示例: 口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。
View More

口服配方 3: 溶解于 PEG400 (聚乙二醇400)
口服配方 4: 悬浮于0.2% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 5: 溶解于0.25% Tween 80 and 0.5% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 6: 做成粉末与食物混合


注意: 以上为较为常见方法,仅供参考, InvivoChem并未独立验证这些配方的准确性。具体溶剂的选择首先应参照文献已报道溶解方法、配方或剂型,对于某些尚未有文献报道溶解方法的化合物,需通过前期实验来确定(建议先取少量样品进行尝试),包括产品的溶解情况、梯度设置、动物的耐受性等。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.0674 mL 10.3370 mL 20.6740 mL
5 mM 0.4135 mL 2.0674 mL 4.1348 mL
10 mM 0.2067 mL 1.0337 mL 2.0674 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

相关产品
联系我们