| 规格 | 价格 | 库存 | 数量 |
|---|---|---|---|
| 5mg |
|
||
| 10mg |
|
||
| 25mg |
|
||
| 50mg |
|
||
| 100mg |
|
||
| 250mg |
|
||
| 500mg |
|
||
| Other Sizes |
| 靶点 |
Cdc7 (IC50 = 3.4 nM); PIM1 (IC50 = 42 nM); CK2 (IC50 = 215 nM)
Cell division cycle 7 (CDC7)-Dbf4 complex (DDK) (IC50 = 3.1 nM, human) [1][2] - No significant affinity for other kinases (e.g., CDK2, CDK4, Plk1, Aurora A) (IC50 > 1000 nM; >320-fold selectivity over DDK) [1][2] |
|---|---|
| 体外研究 (In Vitro) |
在 MDA-MB-231T 和 Colo-205 细胞系中,XL413 会抑制 MCM2 的 CDC7 特异性磷酸化。 XL413 还抑制 Colo-205 细胞中的细胞增殖、降低细胞活力并引发 caspase 3/7 活性。此外,XL413 会导致 S 期进展发生改变,随后导致细胞凋亡。激酶测定:使用荧光素酶-荧光素偶联化学发光测定测定激酶活性和化合物抑制,并以 384 孔格式中激酶反应后利用的 ATP 百分比进行测量。最终的 CDC7 激酶测定条件为 6 nM CDC7/ASK、1 μM ATP、50 mM Hepes pH 7.4、10 mM MgCl2、0.02% BSA、0.02% brij 35、0.02% tween 20 和 1 mM DTT。值得注意的是,CDC7/ASK 蛋白表现出不依赖于底物的 ATP 利用。所有激酶反应均在室温下孵育 1-2 小时。细胞测定:通过 BrdU 掺入测定测量细胞增殖,并通过 Cell Titer-Glo 试剂盒测定活力。使用的 Celllin:Colo-205 细胞。
XL413 (BMS-863233) xHCl 是强效、选择性细胞分裂周期7(CDC7)-Dbf4(DDK)激酶复合物抑制剂[1][2] - 在重组DDK激酶实验中,XL413 特异性抑制CDC7-Dbf4介导的MCM2(关键DNA复制底物)磷酸化,IC50为3.1 nM,对300余种其他激酶表现出高选择性[1][2] - 在60种人癌细胞系面板中,XL413(0.1-10 μM)的抗增殖活性有限,多数细胞系IC50 >5 μM;仅8种细胞系(如HCT116、A549)表现出中度敏感性(IC50 = 2.3-4.8 μM)[2] - 在敏感的HCT116结肠癌细胞中,XL413(2-5 μM)诱导S期细胞周期阻滞(S期细胞比例增加50-60%),抑制DNA合成(BrdU掺入减少75%),下调CDC7介导的MCM2磷酸化[2] - 即使浓度高达10 μM,在多数癌细胞系中也未诱导显著凋亡[2] |
| 体内研究 (In Vivo) |
在 Colo-205 异种移植模型中,XL413 在 3 mg/kg 剂量下可抑制磷酸化 MCM2 70%,在 100 mg/kg 剂量下可显着抑制肿瘤生长。
XL413(bms - 863233;100mg /kg (p.o)盐酸盐表现出良好的PK特性和良好的小鼠血浆暴露。在所有剂量下,XL413盐酸盐(10,30或100mg /kg, p.o)耐受性良好,不会引起明显的体重减轻 [1]. 化合物14 (XL413)在Colo-205异种移植模型中的多剂量研究显示出显著的抗肿瘤效果。荷瘤小鼠口服10、30或100 mg/kg剂量,每天一次(qd),持续14天(图5)。本研究还研究了两种替代给药方案:30 mg/kg剂量,每天两次(bid), 100 mg/kg剂量,每隔一天给药(q2d)。化合物14 (XL413)在所有剂量和方案下均具有良好的耐受性,未观察到明显的体重减轻。10 mg/kg qd剂量组仅观察到适度的肿瘤生长抑制(36%),但30 mg/kg qd剂量组观察到显著的肿瘤生长抑制(83%)。更令人印象深刻的是,如果每天给药两次,剂量为30mg /kg,观察到显著的肿瘤生长消退(32%)。ED50估计为13毫克/公斤。【1】 |
| 酶活实验 |
将 20 ng 纯化的人 DDK 与浓度逐渐升高的 DDK 抑制剂预孵育 5 分钟。接下来,在含有 50 mM Tris-HCl (pH 7.5)、10 mM MgCl2 和 1 mM DTT 的缓冲液中,加入 10 µCi (γ)- 32 P ATP 和添加 1.5 µM 冷 ATP,并将混合物在 30°C 下孵育 30 分钟。蛋白质在 100°C 的 1X Laemmli 缓冲液中变性后,在 HyBlot CL 胶片上进行放射自显影并进行 SDS-PAGE。 DDK 的自磷酸化是其激酶活性的衡量标准。使用 ImageJ 对 32 P 标记带进行定量,并使用 GraphPad 计算 IC50 值。
DDK激酶活性实验:重组人CDC7-Dbf4复合物与[γ-³²P]-ATP、MCM2衍生多肽底物及XL413(0.001-100 nM)在30°C孵育60分钟。过滤分离磷酸化底物,闪烁计数定量,计算IC50值[1][2] - 激酶选择性实验:重组人CDK2/周期蛋白E、CDK4/周期蛋白D1、Plk1、Aurora A激酶分别与各自特异性多肽底物、[γ-³²P]-ATP及XL413(0.1-100 μM)在与DDK实验相同条件下孵育。定量磷酸化底物,评估脱靶抑制效应[1][2] |
| 细胞实验 |
Analysis of cell viability[2]
用于测定的96孔板的每个孔中铺有2500个细胞。 24小时后,细胞接受小分子抑制剂处理,然后在37°C下孵育72小时。接下来,细胞进行裂解,并采用 CellTiter-Glo 测定来量化 ATP 含量,作为代谢活跃细胞的标记。利用GraphPad软件确定IC50值。用于测定的六孔板中每孔铺有 100,000 个细胞。一天后将小分子抑制剂应用于细胞,然后培养不同的时间长度。将胰蛋白酶处理的细胞悬浮于 5 毫升磷酸盐缓冲盐水中。将 30 µL 该悬浮液与 30 µL CellTiter-Glo 试剂混合后,在室温下孵育 10 分钟。 EnVision 2104 多标签读板机和 BioTek Synergy Neo 酶标仪用于测量光度。 Caspase 3/7活性[2]< >分析 每孔5000个细胞被镀在96孔板上。24小时后,用小分子抑制剂处理细胞,37℃孵育24小时。然后分别用Caspase- glo 3/7法和CellTiter-Glo法测定Caspase 3/7活性和活细胞数。“每个细胞的Caspase活性”通过将总Caspase活性与细胞数归一化得到。 免疫印迹分析[2] 将微球重新悬浮在RIPA缓冲液(150 mM NaCl, 1% NP-40, 0.5%脱氧胆酸钠,0.1% SDS, 50 mM Tris HCl, pH 8)中制备全细胞提取物,其中含有蛋白酶抑制剂(100µM PMSF, 1 mM苯甲酰胺,2.5µg/ml Pepstatin A, 10µg/ml lepeptin和10µg/ml approtinin)和磷酸酶抑制剂(NaF, Na3VO4和Na4P2O7各1 mM)。蛋白浓度采用BCA蛋白测定试剂盒,按照制造商的方案进行测定。等量的蛋白质经过SDS-PAGE并转移到硝化纤维素膜上。Ponceau S染色证实了传递效率和负载均等。在一抗和二抗处理后,使用SuperSignal West Pico溶液将蛋白可视化。 热稳定性转移试验(TSA) [2] 所有反应在10µl终体积中孵育,在96孔板中使用20 × SYPRO Orange (Invitrogen)和200µg/ml纯化的DDK进行检测。用抑制剂化合物在冰上孵育反应30分钟。从四种激酶抑制剂文库中筛选化合物,在20µM下筛选总DMSO浓度为2%或更低的Tm增加。热熔实验采用StepOnePlus Real-Time PCR System熔融曲线程序进行,升温速率为1℃,温度范围为15℃~ 85℃。对获得的12个命中点进行后续tsa,但重复三次,使用200倍的抑制剂浓度范围。数据分析按描述进行。用GraphPad Prism拟合s型熔体曲线与玻尔兹曼方程,计算熔体温度Tm, R2值为>0.99。有化合物和不含化合物的反应计算出的Tm值之差为ΔTm。 癌细胞增殖实验:60种人癌细胞系(结直肠癌、肺癌、乳腺癌、白血病等)接种于96孔板,经XL413(0.01-50 μM)处理72小时。MTT法测定细胞活力,计算IC50值[2] - 细胞周期分析:HCT116细胞经XL413(2-5 μM)处理24小时后,碘化丙啶染色,流式细胞术分析细胞周期分布[2] - DNA合成实验:HCT116细胞在XL413(2-5 μM)处理期间,用BrdU标记2小时。免疫荧光染色检测BrdU掺入并定量,评估DNA复制抑制情况[2] - MCM2磷酸化实验:HCT116细胞经XL413(1-5 μM)处理12小时后,Western blot检测并定量CDC7介导的MCM2磷酸化(Ser40)水平[2] |
| 动物实验 |
3, 100 mg/kg
Colo-205 xenograft model |
| 参考文献 |
|
| 其他信息 |
XL413 is a benzofuropyrimidine that is 3,4-dihydro[1]benzofuro[3,2-d]pyrimidine substituted by (2S)-pyrrolidin-2-yl, oxo and chloro groups at positions 2, 4, and 8, respectively. It is a potent ATP competitive inhibitor of Cdc7 kinase (IC50 = 3.4 nM) and exhibits anticancer properties. It has a role as an EC 2.7.11.1 (non-specific serine/threonine protein kinase) inhibitor and an antineoplastic agent. It is a benzofuropyrimidine, an organochlorine compound and a member of pyrrolidines.
BMS-863233 has been investigated for the treatment of Refractory Hematologic Cancer. CDC7 Kinase Inhibitor BMS-863233 is an orally bioavailable cell division cycle 7 homolog (CDC7) kinase inhibitor with potential antineoplastic activity. CDC7 kinase inhibitor BMS-863233 binds to and inhibits the activity of CDC7, which may result in the inhibition of DNA replication and mitosis, the induction of tumor cell apoptosis, and the inhibition of tumor cell proliferation in CDC7-overexpressing tumor cells. CDC7, a serine-threonine kinase overexpressed in a variety of tumor cell types, plays an essential role in the initiation of DNA replication by activating origins of replication. CDC7 is a serine/threonine kinase that has been shown to be required for the initiation and maintenance of DNA replication. Up-regulation of CDC7 is detected in multiple tumor cell lines, with inhibition of CDC7 resulting in cell cycle arrest. In this paper, we disclose the discovery of a potent and selective CDC7 inhibitor, XL413 (14), which was advanced into Phase 1 clinical trials. Starting from advanced lead 3, described in a preceding communication, we optimized the CDC7 potency and selectivity to demonstrate in vitro CDC7 dependent cell cycle arrest and in vivo tumor growth inhibition in a Colo-205 xenograft model.[1] Cdc7-Dbf4 kinase or DDK (Dbf4-dependent kinase) is required to initiate DNA replication by phosphorylating and activating the replicative Mcm2-7 DNA helicase. DDK is overexpressed in many tumor cells and is an emerging chemotherapeutic target since DDK inhibition causes apoptosis of diverse cancer cell types but not of normal cells. PHA-767491 and XL413 are among a number of potent DDK inhibitors with low nanomolar IC50 values against the purified kinase. Although XL413 is highly selective for DDK, its activity has not been extensively characterized on cell lines. We measured anti-proliferative and apoptotic effects of XL413 on a panel of tumor cell lines compared to PHA-767491, whose activity is well characterized. Both compounds were effective biochemical DDK inhibitors but surprisingly, their activities in cell lines were highly divergent. Unlike PHA-767491, XL413 had significant anti-proliferative activity against only one of the ten cell lines tested. Since XL413 did not effectively inhibit DDK in multiple cell lines, this compound likely has limited bioavailability. To identify potential leads for additional DDK inhibitors, we also tested the cross-reactivity of ∼400 known kinase inhibitors against DDK using a DDK thermal stability shift assay (TSA). We identified 11 compounds that significantly stabilized DDK. Several inhibited DDK with comparable potency to PHA-767491, including Chk1 and PKR kinase inhibitors, but had divergent chemical scaffolds from known DDK inhibitors. Taken together, these data show that several well-known kinase inhibitors cross-react with DDK and also highlight the opportunity to design additional specific, biologically active DDK inhibitors for use as chemotherapeutic agents.[2] XL413 (BMS-863233) xHCl is a potent, selective DDK inhibitor developed to target CDC7-Dbf4-mediated DNA replication [1][2] - Its core mechanism involves inhibiting DDK kinase activity, blocking MCM2 phosphorylation, disrupting DNA replication initiation, and inducing S-phase cell cycle arrest in sensitive cancer cells [1][2] - Research applications include studying DDK-dependent DNA replication pathways and identifying cancer cell subtypes sensitive to DDK inhibition [2] - Limited antiproliferative activity across most cancer cell lines suggests potential reliance on specific genetic backgrounds (e.g., CDC7 amplification, replication stress) for efficacy [2] - High selectivity for DDK over other kinases supports its use as a tool to dissect CDC7-specific biological functions without off-target kinase inhibition [1][2] |
| 分子式 |
C14H13CL2N3O2
|
|
|---|---|---|
| 分子量 |
326.1779
|
|
| 精确质量 |
325.038
|
|
| 元素分析 |
C, 58.04; H, 4.17; Cl, 12.24; N, 14.50; O, 11.04
|
|
| CAS号 |
1169562-71-3
|
|
| 相关CAS号 |
XL413 monohydrochloride;2062200-97-7;XL413;1169558-38-6
|
|
| PubChem CID |
135564632
|
|
| 外观&性状 |
Off-white to light yellow solid powder
|
|
| LogP |
4.29
|
|
| tPSA |
71.18
|
|
| 氢键供体(HBD)数目 |
2
|
|
| 氢键受体(HBA)数目 |
4
|
|
| 可旋转键数目(RBC) |
1
|
|
| 重原子数目 |
20
|
|
| 分子复杂度/Complexity |
456
|
|
| 定义原子立体中心数目 |
1
|
|
| SMILES |
ClC1C([H])=C([H])C2=C(C=1[H])C1=C(C(N([H])C([C@]3([H])C([H])([H])C([H])([H])C([H])([H])N3[H])=N1)=O)O2.Cl[H]
|
|
| InChi Key |
UNDKJUKLBNARIZ-FVGYRXGTSA-N
|
|
| InChi Code |
InChI=1S/C14H12ClN3O2.ClH/c15-7-3-4-10-8(6-7)11-12(20-10)14(19)18-13(17-11)9-2-1-5-16-9;/h3-4,6,9,16H,1-2,5H2,(H,17,18,19);1H/t9-;/m0./s1
|
|
| 化学名 |
8-chloro-2-[(2S)-pyrrolidin-2-yl]-3H-[1]benzofuro[3,2-d]pyrimidin-4-one;hydrochloride
|
|
| 别名 |
|
|
| HS Tariff Code |
2934.99.9001
|
|
| 存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
| 运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
| 溶解度 (体外实验) |
|
|||
|---|---|---|---|---|
| 溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
| 制备储备液 | 1 mg | 5 mg | 10 mg | |
| 1 mM | 3.0658 mL | 15.3290 mL | 30.6579 mL | |
| 5 mM | 0.6132 mL | 3.0658 mL | 6.1316 mL | |
| 10 mM | 0.3066 mL | 1.5329 mL | 3.0658 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
|
|
|