Cisapride monohydrate

别名: Cisapride monohydrate; Alimix; Cisapride hydrate; MFCD03305346; Acenalin; Propulsid; 4-AMINO-5-CHLORO-N-((3R,4S)-1-(3-(4-FLUOROPHENOXY)PROPYL)-3-METHOXYPIPERIDIN-4-YL)-2-METHOXYBENZAMIDE HYDRATE; 西沙比利;西沙必利 USP标准品
目录号: V45077 纯度: ≥98%
Cisapride一水合物是一种口服生物可利用的5-HT4受体激动剂(激活剂)和hERG抑制剂。
Cisapride monohydrate CAS号: 260779-88-2
产品类别: New3
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
50mg
100mg
500mg
1g
Other Sizes

Other Forms of Cisapride monohydrate:

  • 2-O-Desmethyl cisapride
  • Norcisapride ((±)-Norcisapride; rel-Ticalopride)
  • (+)-Norcisapride
  • Cisapride-d6
  • 西沙必利
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
产品描述
Cisapride一水合物是一种口服生物可利用的5-HT4受体激动剂(激活剂)和hERG抑制剂。西沙必利一水合物是一种促动力剂,可促进或恢复整个胃肠道的动力。西沙必利一水合物通过肠肌间神经丛节后神经末梢释放乙酰胆碱的间接机制刺激胃肠道运动活动。
生物活性&实验参考方法
靶点
5-HT4 receptor ( EC50 = 140 nM ); hERG channel ( IC50 = 9.4 nM )
体外研究 (In Vitro)
Cisapride (1-100 nM) 是一种有效的 hERG 膨胀剂,IC50 值为 9.4 nM[1]。 Cisapride (1-100 nM) 对 5-HT4 的输入有效,EC50 值为 140 nM[1]。西沙必利(0.3,1,3,10 和 30 μM)对 Kv4.3 的抑制作用呈剂量依赖性,IC50 值为 9.8 μM 在表达 Kv4.3 钾通道的 CHO 细胞[2]。
体内研究 (In Vivo)
西沙必利 (0.1-1 mg/kg;注射,一次) 刺激清醒犬的胃窦和地下水运动[3]。 西沙必利 (2 mg/kg,(腹腔注射);4 mg/kg,(口腔);一次)与三硝基苯磺酸处理的端点在宏观特征、组织病理学特征、细胞因子谱和体重变化均无显着差异[4]。 动物模型:雄性Wistar大鼠用三硝基苯磺酸(TNBS)诱导的大鼠结肠炎[4] 剂量:2 mg/kg(腹腔注射); 4 mg/kg,(口服) 给药方式:2 mg/kg,腹腔注射; 4mg/kg,口服;结果:结肠炎大鼠出现严重、强烈的透壁炎症和弥漫性坏死、炎性肉芽肿和粘膜下中性粒细胞浸润。引起体重减轻。 迫切需要进行研究,以揭示旨在分析IBD治疗可能途径的靶点。由于血清素可能参与肠道炎症,5HT(4)受体在胃肠道功能中起着重要作用,因此研究5HT(3)受体在IBD发病机制中的作用将是有趣的。本研究旨在探讨5-羟色胺4受体激动剂西沙必利对三硝基苯磺酸(TNBS)诱导的大鼠结肠炎的影响。在大鼠使用TNBS诱导结肠炎两小时后,腹腔注射西沙必利(2mg/kg);4mg/kg,口服(p.o))和地塞米松(1mg/kg,i.p;2mg/kg,p.o)给药6天。此后,动物被安乐死;对远端结肠样本进行了宏观、组织学和生化评估以及ELISA检测。我们的数据显示,地塞米松治疗(i.p,p.o)显著降低了宏观和微观损伤以及生化标志物,但西沙必利(i.p或p.o)和TNBS治疗的大鼠在上述参数上没有显著差异。可以推断,由于TNBS引起的结肠炎严重程度很大(通过各种途径),西沙必利不能通过5HT(4)受体引起更多的结肠炎损伤。基于本研究,需要进一步的研究来调查5HT(4)受体在溃疡性结肠炎发病机制中的确切作用。[4]
酶活实验
莫沙必利和西沙必利是具有5-羟色胺4受体激动剂活性的胃动力药物,已被广泛用于治疗各种胃肠道疾病。采用全细胞膜片钳技术研究了莫沙必利和西沙必利对克隆的Kv4.3通道在中国仓鼠卵巢细胞中稳定表达的影响。莫沙必利和西沙必利以浓度依赖的方式抑制Kv4.3,IC50值分别为15.2和9.8μM。莫沙必利以浓度依赖的方式加速Kv4.3的失活和活化速率,从而缩短达到峰值的时间。莫沙必利的缔合速率常数(k+1)和解离速率常数(k-1)分别为9.9μM(-1)s(-1)和151.3 s(-1)。K D(K-1/K+1)为16.2μM,与浓度反应曲线计算的IC50值相似。在通道打开的电压范围内观察到莫沙必利的电压依赖性抑制,但在所有Kv4.3通道都打开的电压区域内没有观察到。在莫沙必利存在下,Kv4.3的稳态激活和失活曲线均向超极化方向偏移。莫沙必利还显著加速了Kv4.3的闭合状态失活。莫沙必利产生使用依赖性抑制,这与Kv4.3失活后的缓慢恢复一致。M1和去甲西沙必利分别是莫沙必利和西沙必利的主要代谢产物,对Kv4.3的影响很小或没有影响。这些结果表明,莫沙必利通过在去极化过程中优先结合通道的开放状态和在亚阈值电位下加速封闭状态失活来抑制Kv4.3[2]
细胞实验
使用全细胞膜片钳技术在HEK293细胞中研究了三种5-羟色胺(4)激动剂西沙必利、莫沙必利和新发现的CJ-033466对人以太-a-go-go相关基因(hERG)通道的阻断作用。西沙必利被发现是最有效的hERG阻断剂。在受试化合物中,CJ-033466的hERG阻断活性和5-HT(4)激动作用之间的安全裕度最大。这表明与其他2种激动剂相比,CJ-033466的心律失常临床风险较低。因此,CJ-033466有可能成为一种比西沙必利和莫沙必利具有更高疗效和更低心脏风险的药物[1]。
动物实验
Male Wistar rats with trinitrobenzenesulfonic-acid-(TNBS) induced rat colitis 2 mg/kg (i.p.); 4 mg/kg, (oral administration) 2 mg/kg, intraperitoneal injection ; 4 mg/kg, oral administration; once
药代性质 (ADME/PK)
Absorption
Cisapride is rapidly absorbed after oral administration, with an absolute bioavailability of 35-40%.

The placental transfer of cisapride, a new prokinetic agent, was studied in a sheep model. The pharmacokinetics of cisapride were studied in the lamb, the pregnant ewe, and the fetus by obtaining blood samples from chronically implanted arterial catheters. Comparable pharmacokinetic parameters were found in the lamb and the adult sheep: half-life, 1.39-1.83 hr; total plasma clearance, 1998-2160 ml/kg/hr; AUC, 92.6-100.1 ng.hr/ml. Cisapride plasma concentrations after continuous infusion were predicted correctly based on the parameters obtained after IV bolus. There was a materno-fetal transfer of cisapride following a single IV bolus administered to the mother. Cisapride crossed the placenta within 5 min and equilibrated with maternal plasma within 20 to 30 min after dosing. The average fetal-to-maternal plasma concentration ratio was 0.71. The amniotic fluid also contained measurable amounts of cisapride. The protein binding of cisapride in maternal and fetal plasma is 89.0% and 88.4%, respectively; the free fraction is 4 times larger than in humans. Cisapride crosses the ovine placental barrier. The sheep placenta is less permeable than the human placenta, but the higher free fraction of cisapride facilitates placental transfer. PMID:1673393
Metabolism / Metabolites
Hepatic. Extensively metabolized via cytochrome P450 3A4 enzyme.
IPA COPYRIGHT: ASHP The metabolism of cisapride in vitro using Liver fractions of dogs, rabbits, and rats and the metabolites identified by high performance LC and by MS are described. Main bi otransformat i on routes were oxi dat i ve N-dealkylat i on at the pi peri di ne ni trogen and aron at i c hydroxylat i on at the fluorophenyl or at the benzami de moi ety. ENG ~21 nq~_~n_~.
Biological Half-Life: 6-12 hours
毒性/毒理 (Toxicokinetics/TK)
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Cisapride was removed from the market in the United States by the U.S. Food and Drug Administration because of cardiac toxicity. Because of the low levels of cisapride in breastmilk, its use is acceptable in nursing mothers if it is required.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
参考文献

[1]. Wiseman, L.R., Faulds, D. Cisapride. Drugs 47, 116–152 (1994).

[2]. The 5-HT(4) agonists cisapride, mosapride, and CJ-033466, a Novel potent compound, exhibit different human ether-a-go-go-related gene (hERG)-blocking activities. J Pharmacol Sci. 2007 Oct;105(2):207-10.

其他信息
A substituted benzamide used for its prokinetic properties. It is used in the management of gastroesophageal reflux disease, functional dyspepsia, and other disorders associated with impaired gastrointestinal motility. (Martindale The Extra Pharmacopoeia, 31st ed)
See also: Cisapride (has active moiety).
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C23H31CLFN3O5
分子量
483.960748910904
精确质量
483.193
元素分析
C, 57.08; H, 6.46; Cl, 7.32; F, 3.93; N, 8.68; O, 16.53
CAS号
260779-88-2
相关CAS号
Cisapride;81098-60-4; 60779-88-2 (monohydrate); 189888-25-3 (tartrate)
PubChem CID
6917697
外观&性状
Typically exists as solid at room temperature
tPSA
87
氢键供体(HBD)数目
3
氢键受体(HBA)数目
8
可旋转键数目(RBC)
9
重原子数目
33
分子复杂度/Complexity
581
定义原子立体中心数目
2
SMILES
CO[C@H]1CN(CC[C@H]1NC(=O)C2=CC(=C(C=C2OC)N)Cl)CCCOC3=CC=C(C=C3)F.O
InChi Key
QBYYXIDJOFZORM-LBPAWUGGSA-N
InChi Code
InChI=1S/C23H29ClFN3O4.H2O/c1-30-21-13-19(26)18(24)12-17(21)23(29)27-20-8-10-28(14-22(20)31-2)9-3-11-32-16-6-4-15(25)5-7-16;/h4-7,12-13,20,22H,3,8-11,14,26H2,1-2H3,(H,27,29);1H2/t20-,22+;/m1./s1
化学名
4-amino-5-chloro-N-[(3S,4R)-1-[3-(4-fluorophenoxy)propyl]-3-methoxypiperidin-4-yl]-2-methoxybenzamide;hydrate
别名
Cisapride monohydrate; Alimix; Cisapride hydrate; MFCD03305346; Acenalin; Propulsid; 4-AMINO-5-CHLORO-N-((3R,4S)-1-(3-(4-FLUOROPHENOXY)PROPYL)-3-METHOXYPIPERIDIN-4-YL)-2-METHOXYBENZAMIDE HYDRATE;
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
溶解度 (体内实验)
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。

注射用配方
(IP/IV/IM/SC等)
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO 50 μL Tween 80 850 μL Saline)
*生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。
注射用配方 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO 400 μL PEG300 50 μL Tween 80 450 μL Saline)
注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO 900 μL Corn oil)
示例: 注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。
View More

注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO 900 μL (20% SBE-β-CD in Saline)]
*20% SBE-β-CD in Saline的制备(4°C,储存1周):将2g SBE-β-CD (磺丁基-β-环糊精) 溶解于10mL生理盐水中,得到澄清溶液。
注射用配方 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (如: 500 μL 2-Hydroxypropyl-β-cyclodextrin (羟丙基环胡精) 500 μL Saline)
注射用配方 6: DMSO : PEG300 : Castor oil : Saline = 5 : 10 : 20 : 65 (如: 50 μL DMSO 100 μL PEG300 200 μL Castor oil 650 μL Saline)
注射用配方 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (如: 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
注射用配方 8: 溶解于Cremophor/Ethanol (50 : 50), 然后用生理盐水稀释。
注射用配方 9: EtOH : Corn oil = 10 : 90 (如: 100 μL EtOH 900 μL Corn oil)
注射用配方 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL EtOH 400 μL PEG300 50 μL Tween 80 450 μL Saline)


口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠)
口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素)
示例: 口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。
View More

口服配方 3: 溶解于 PEG400 (聚乙二醇400)
口服配方 4: 悬浮于0.2% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 5: 溶解于0.25% Tween 80 and 0.5% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 6: 做成粉末与食物混合


注意: 以上为较为常见方法,仅供参考, InvivoChem并未独立验证这些配方的准确性。具体溶剂的选择首先应参照文献已报道溶解方法、配方或剂型,对于某些尚未有文献报道溶解方法的化合物,需通过前期实验来确定(建议先取少量样品进行尝试),包括产品的溶解情况、梯度设置、动物的耐受性等。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.0663 mL 10.3314 mL 20.6629 mL
5 mM 0.4133 mL 2.0663 mL 4.1326 mL
10 mM 0.2066 mL 1.0331 mL 2.0663 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT01281566 Terminated Drug: Placebo
Drug: Cisapride
Infant, Premature
Infant, Newborn
Johnson & Johnson Pharmaceutical
Research & Development,
L.L.C.
March 2003 Phase 4
NCT01286090 Terminated Drug: Placebo
Drug: Cisapride
Gastroparesis
Diabetes Mellitus
Johnson & Johnson Pharmaceutical
Research & Development,
L.L.C.
July 2003 Phase 4
NCT01281540 Terminated Drug: Placebo
Drug: Cisapride
Gastroparesis Johnson & Johnson Pharmaceutical
Research & Development,
L.L.C.
May 2003 Phase 4
联系我们