Crizotinib acetate

别名: PF 2341066; PF-2341066; Crizotinib (acetate); 2-Pyridinamine, 3-[(1R)-1-(2,6-dichloro-3-fluorophenyl)ethoxy]-5-[1-(4-piperidinyl)-1H-pyrazol-4-yl]-, acetate (1:1); FB99MH8KWZ; SCHEMBL1827232; DTXSID00236600; LFCVDLCLKZRGFW-UTONKHPSSA-N; PF2341066 acetic acid,3-[(1R)-1-(2,6-dichloro-3-fluorophenyl)ethoxy]-5-(1-piperidin-4-ylpyrazol-4-yl)pyridin-2-amine
目录号: V15288 纯度: ≥98%
醋酸克唑替尼,克唑替尼的醋酸盐(PF02341066;PF-02341066;Xalkori),是 c-Met 和 ALK 的抑制剂,也是一种已批准的抗癌药物。
Crizotinib acetate CAS号: 877399-53-6
产品类别: New1
产品仅用于科学研究,不针对患者销售
规格 价格
500mg
1g
Other Sizes

Other Forms of Crizotinib acetate:

  • Crizotinib-d5 (PF-02341066-d5)
  • 盐酸克唑替尼
  • 克唑替尼
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
顾客使用InvivoChem 产品克唑替尼醋酸盐发表1篇科研文献
产品描述
醋酸克唑替尼,克唑替尼的醋酸盐(PF02341066;PF-02341066;Xalkori),是 c-Met 和 ALK 的抑制剂,也是一种已批准的抗癌药物。
生物活性&实验参考方法
靶点
ROS1 (Ki < 0.025 nM); c-Met (IC50 = 11 nM); NPM-ALK (IC50 = 24 nM)
体外研究 (In Vitro)
体外活性:PF-2341066 在 mIMCD3 小鼠或 MDCK 犬上皮细胞中表现出类似的抗 c-Met 磷酸化功效,IC50 分别为 5 nM 和 20 nM。与 NIH3T3 细胞相比,PF-2341066 对工程表达 c-Met ATP 结合位点突变体 V1092I 或 H1094R 或 P 环突变体 M1250T 的 NIH3T3 细胞表现出改善或相似的活性,IC50 分别为 19 nM、2 nM 和 15 nM表达野生型受体,IC50 为 13 nM。相反,与野生型受体相比,观察到 PF-2341066 针对表达 c-Met 激活环突变体 Y1230C 和 Y1235D 的细胞的效力发生显着变化,IC50 分别为 127 nM 和 92 nM。 PF-2341066 还可有效防止 NCI-H69 和 HOP92 细胞中 c-Met 的磷酸化,IC50 分别为 13 nM 和 16 nM,这些细胞分别表达内源性 c-Met 变体 R988C 和 T1010I。与 c-Met 相比,PF-2341066 对 VEGFR2 和 PDGFRβ RTK 的选择性 > 1,000 倍,对 IRK 和 Lck 的选择性 > 250 倍,对 Tie2、TrkA 和 TrkB 的选择性大约 40 至 60 倍。 PF-2341066 对 RON 和 Axl RTK 的选择性是 20 至 30 倍。相比之下,PF-2341066 对 KARPAS299 人间变性大细胞淋巴瘤 (ALCL) 细胞系表达的 ALK RTK 的核磷蛋白 (NPM)-间变性淋巴瘤激酶 (ALK) 致癌融合变体显示出近乎等效的 IC50 为 24 nM。 PF-2341066 抑制癌细胞的 c-Met 依赖性肿瘤表型和内皮细胞的血管生成表型。 PF-2341066 抑制人 GTL-16 胃癌细胞生长,IC50 为 9.7 nM。 PF-2341066 诱导 GTL-16 细胞凋亡,IC50 为 8.4 nM。 PF-2341066 抑制 HGF 刺激的人 NCI-H441 肺癌细胞迁移和侵袭,IC50 分别为 11 nM 和 6.1 nM。 PF-2341066 抑制 MDCK 细胞散射,IC50 为 16 nM。 PF-2341066 可防止 HGF 刺激的 c-Met 磷酸化、细胞存活和基质胶侵袭,IC50 分别为 11 nM、14 nM 和 35 nM。此外,PF-2341066 还可防止纤维蛋白凝胶中血清刺激的 HMVEC 分支管生成(血管形成)。 PF-2341066 还可有效抑制 Karpas299 或 SU-DHL-1 ALCL 细胞中的 NPM-ALK 磷酸化,IC50 为 24 nM。 PF-2341066 有效防止细胞增殖,这与 G(1)-S 期细胞周期停滞和诱导 ALK 阳性 ALCL 细胞凋亡相关,IC50 为 30 nM,但与 ALK 阴性淋巴瘤细胞无关。此外,PF-2341066 还可预防与原发肿瘤生长(即增殖和存活)以及转移(例如侵袭和克隆性)相关的骨肉瘤行为。激酶测定:将细胞接种在 96 孔板中补充有 10% 胎牛血清 (FBS) 的培养基中,24 小时后转移至无血清培养基 [含 0.04% 牛血清白蛋白 (BSA)]。在研究配体依赖性 RTK 磷酸化的实验中,添加相应的生长因子长达 20 分钟。将细胞与 PF-2341066 和/或适当的配体孵育指定时间后,用补充有 1 mM Na3VO4 的 HBSS 洗涤细胞一次,并从细胞中产生蛋白质裂解物。随后,使用用于包被 96 孔板的特异性捕获抗体和对磷酸化酪氨酸残基具有特异性的检测抗体,通过夹心 ELISA 方法评估所选蛋白激酶的磷酸化。抗体包被板 (a) 在蛋白质裂解物存在下于 4°C 孵育过夜; (b) 用含 1% Tween 20 的 PBS 洗涤七次; (c) 在辣根过氧化物酶缀合的抗总磷酸酪氨酸 (PY-20) 抗体 (1:500) 中孵育 30 分钟; (d)再清洗七次; (e) 在 3,3',5,5'-四甲基联苯胺过氧化物酶底物中孵育以启动比色反应,通过添加 0.09 N H2SO4 来终止该反应; (f) 使用分光光度计测量 450 nm 处的吸光度。细胞测定:将包括GTL-16胃癌细胞和T47D乳腺癌细胞的细胞(GTL-16胃癌细胞和T47D乳腺癌细胞)接种到96孔板中补充有10%胎牛血清(FBS)的培养基中并转移24 小时后转移至无血清培养基 [含 0.04% 牛血清白蛋白 (BSA)]。在研究配体依赖性 RTK 磷酸化的实验中,添加相应的生长因子长达 20 分钟。将细胞与 PF-2341066 和/或适当的配体孵育指定时间后,用补充有 1 mM Na3VO4 的 HBSS 洗涤细胞一次,并从细胞中产生蛋白质裂解物。随后,使用用于包被 96 孔板的特异性捕获抗体和对磷酸化酪氨酸残基具有特异性的检测抗体,通过夹心 ELISA 方法评估所选蛋白激酶的磷酸化。抗体包被板 (a) 在蛋白质裂解物存在下于 4 °C 孵育过夜; (b) 用含 1% Tween 20 的 PBS 洗涤七次; (c) 在辣根过氧化物酶缀合的抗总磷酸酪氨酸 (PY-20) 抗体 (1:500) 中孵育 30 分钟; (d)再清洗七次; (e) 在 3,3',5,5'-四甲基联苯胺过氧化物酶底物中孵育以启动比色反应,通过添加 0.09 N H2SO4 来终止该反应; (f) 使用分光光度计测量 450 nm 处的吸光度。
体内研究 (In Vivo)
在 GTL-16 模型中,PF-2341066 揭示了在 50 mg/kg/天和 75 mg/kg/天治疗组中,能够使已形成的大肿瘤 (>600 mm3) 显着消退,减少 60% 43 天给药方案的平均肿瘤体积。在另一项研究中,PF-2341066 显示出完全抑制 GTL-16 肿瘤生长超过 3 个月的能力,在 50 mg/kg/ 的 3 个月治疗方案中,12 只小鼠中只有 1 只表现出肿瘤生长显着增加。天。在 NCI-H441 NSCLC 模型中,在 38 天的 PF-2341066 给药周期中,每天 50 mg/kg 时观察到平均肿瘤体积减少 43%。在 Caki-1 RCC 模型中,在 33 天的 PF-2341066 给药周期中,观察到平均肿瘤体积减少 53%,与每天 50 mg/kg/天的每个肿瘤体积减少至少 30% 相关。 PF-2341066 还显示,在 U87MG 胶质母细胞瘤或 PC-3 前列腺癌异种移植模型中,每天 50 mg/kg 剂量时,PF-2341066 几乎完全预防已形成肿瘤的生长,在最后研究日分别抑制 97% 或 84%。相比之下,以 50 mg/kg/天口服给予 PF-2341066 不会显着抑制 MDA-MB-231 乳腺癌模型或 DLD-1 结肠癌模型中的肿瘤生长。在 GTL-16 肿瘤中,在 12.5 mg/kg/天、25 mg/kg/天和 50 mg/kg/天时观察到 CD31 阳性内皮细胞的显着剂量依赖性减少,表明 MVD 的抑制显示出剂量与抗肿瘤功效的依赖性相关性。 PF-2341066 在 GTL-16 和 U87MG 模型中均显示出人 VEGFA 和 IL-8 血浆水平的显着剂量依赖性降低。口服 PF-2341066 后,在 GTL-16 肿瘤中观察到磷酸化 c-Met、Akt、Erk、PLCλ1 和 STAT5 水平的显着抑制。对携带 Karpas299 ALCL 肿瘤异种移植物的严重联合免疫缺陷米色小鼠口服 PF-2341066 会产生剂量依赖性抗肿瘤功效,在初始化合物给药 15 天内,100 mg/kg/d 剂量下所有肿瘤完全消退。此外,在浓度或剂量水平下观察到 PF-2341066 对关键 NPM-ALK 信号传导介质(包括磷脂酶 C-gamma、信号转导器和转录激活剂 3、细胞外信号调节激酶和 Akt)的抑制作用,这与抑制作用相关NPM-ALK 磷酸化和功能。 PF-2341066 可预防与原发肿瘤生长(例如增殖和存活)以及转移(例如侵袭和克隆性)相关的骨肉瘤行为。在通过口服强饲法用 PF-2341066 治疗的裸鼠中,PF-2341066 阻止了骨肉瘤异种移植物的生长以及相关的骨质溶解和皮质外骨基质形成。用 50 mg/kg PF-2341066 处理 c-MET 扩增的 GTL-16 异种移植物可引起肿瘤消退,这与 18F-FDG 摄取缓慢减少有关,并降低葡萄糖转运蛋白 1 (GLUT-1) 的表达。
酶活实验
在 96 孔板中,将细胞接种到补充有 10% 胎牛血清 (FBS) 的培养基中,24 小时后,将细胞转移到含有 0.04% 牛血清白蛋白 (BSA) 的无血清培养基中。在研究配体依赖性 RTK 磷酸化的实验中,添加相关生长因子长达 20 分钟。将细胞与 PF-2341066 孵育一小时和/或与适当的配体孵育指定时间后,产生蛋白质裂解物。然后再次用补充有一毫克Na3VO4的HBSS洗涤细胞。之后,通过夹心 ELISA 技术评估特定蛋白激酶的磷酸化,该技术采用对磷酸化酪氨酸残基具有特异性的检测抗体和用于包被 96 孔板的特异性捕获抗体。将蛋白质裂解物添加至抗体包被的板中并在 4°C 下孵育一晚。接下来,将板在含 1% Tween 20 的 PBS 中冲洗七次,然后在辣根过氧化物酶缀合的抗总磷酸酪氨酸 (PY-20) 抗体 (1:500) 中孵育 30 分钟。最后,将板再冲洗七次。最后,将板在 3,3',5,5'-四甲基联苯胺过氧化物酶底物中孵育以启动比色反应,通过添加 0.09 N H2SO4 停止比色反应。 (f) 使用分光光度计在 450 nm 处的吸光度。
细胞实验
在低密度下,将肿瘤细胞接种在含有补充有 10% FBS 的生长培养基的 96 孔板中。24 小时后,将细胞转移至含有 0.04% BSA 和 0% FBS 的无血清培养基中。每个孔中填充适当的对照或指定浓度的 PF-2341066,并将细胞孵育 24 至 72 小时。将人脐带血管内皮细胞 (HUVEC) 以每孔超过 20,000 个细胞的密度接种在含有 EGM2 培养基的 96 孔板中 5 至 6 小时后,过夜转移至无血清培养基中。第二天,每个孔都充满适当的对照或指定浓度的 PF-2341066。经过一小时的孵育期后,将 100 ng/mL 的 HGF 添加到指定的孔中。为了确定相关肿瘤细胞或 HUVEC,进行了 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物测定。
动物实验
PF-2341066 is administered orally by gavage to athymic mice carrying xenografts (300-800 mm3) at predetermined dose levels. Mice are given PF-2341066 at predetermined intervals, and tumors are removed with humane care. Using a liquid nitrogen-cooled cryomortar and pestle, tumors are snap frozen, ground into a paste, protein lysates are produced, and protein concentrations are measured with a BSA assay. Through the use of immunoprecipitation-immunoblotting or capture ELISA, the amount of total and phosphorylated protein is measured.
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
In patients with pancreatic, colorectal, sarcoma, anaplastic large-cell lymphoma and non-small cell lung cancer (NSCLC) treated with crizotinib doses ranging from 100 mg once a day to 300 mg twice a day, the mean AUC and Cmax increased in a dose-proportional manner. A single crizotinib dose of crizotinib is absorbed with a median tmax 4 to 6 hours. In patients receiving multiple doses of crizotinib 250 mg twice daily (n=167), the mean AUC was is 2321.00 ng⋅hr/mL, the mean Cmax was 99.60 ng/mL, and the median tmax was 5.0 hours. The mean absolute bioavailability of crizotinib is 43%, ranging from 32% to 66%. High-fat meals reduce the AUC0-INF and Cmax of crizotinib by approximately 14%. Age, sex at birth, and ethnicity (Asian vs non-Asian patients) did not have a clinically significant effect on crizotinib pharmacokinetics. In patients less than 18 years old, higher body weight was associated with a lower crizotinib exposure.
After administering a single 250 mg radiolabeled crizotinib dose to healthy subjects, 63% and 22% of the administered dose were recovered in feces and urine. Unchanged crizotinib represented approximately 53% and 2.3% of the administered dose in feces and urine, respectively.
Following a single intravenous dose, the mean volume of distribution (Vss) of crizotinib was 1772 L.
At steady-state (250 mg twice daily), crizotinib has a mean apparent clearance (CL/F) of 60 L/hr. This value is lower than the one detected after a single 250 mg oral dose (100 L/hr),, possibly due to CYP3A auto-inhibition.
Metabolism / Metabolites
Crizotinib is mainly metabolized in the liver by CYP3A4 and CYP3A5, and undergoes an O-dealkylation, with subsequent phase 2 conjugation. Non-metabolic elimination, such as biliary excretion, can not be excluded. PF-06260182 (with two constituent diastereomers, PF-06270079 and PF-06270080) is the only active metabolite of crizotinib that has been identified. _In vitro_ studies suggest that, compared to crizotinib, PF-06270079 and PF-06270080 are approximately 3- to 8-fold less potent against anaplastic lymphoma kinase (ALK) and 2.5- to 4-fold less potent against Hepatocyte Growth Factor Receptor (HGFR, c-Met).
Biological Half-Life
Following single doses of crizotinib, the plasma terminal half-life was 42 hours.
毒性/毒理 (Toxicokinetics/TK)
Hepatotoxicity
In large early clinical trials, elevations in serum aminotransferase levels occurred in up to 57% of patients treated with standard doses of crizotinib, were greater than 5 times ULN in 6% of patients, and led to early discontinuation of therapy in 2% to 4% of patients. Serum aminotransferase elevations typically arose after 4 to 12 weeks of treatment, but usually without jaundice or alkaline phosphatase elevations. Restarting crizotinib after resolution of the aminotransferase abnormalities can be done starting with a reduced dose. Most cases of liver injury due to crizotinib have been minimally or not symptomatic, and the injury resolved within 1 to 2 months of stopping the drug (Case 1). However, cases with jaundice and symptoms during crizotinib therapy have been reported which were fatal in 0.1% of treated patients (Case 2). The severe cases of liver injury due to crizotinib typically arose within 2 to 6 weeks of starting therapy and presented with marked elevations in serum aminotransferase levels followed by jaundice, progressive hepatic dysfunction, coagulopathy, encephalopathy and death. For these reasons, routine periodic monitoring of liver tests at 2 to 4 week intervals during therapy is recommended.
Likelihood score: C (probable cause of clinically apparent acute liver injury).
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on the clinical use of crizotinib during breastfeeding. Because crizotinib is 91% bound to plasma proteins, the amount in milk is likely to be low. However, its half-life is about 42 hours and it might accumulate in the infant. The manufacturer recommends that breastfeeding be discontinued during crizotinib therapy and for 45 days after the last dose.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
Crizotinib is 91% bound to plasma protein. _In vitro_ studies suggest that this is not affected by drug concentration.
参考文献

[1]. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res. 2007, 67(9), 4408-4417.

[2]. Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther. 2007, 6(12 Pt 1), 3314-3322.

[3]. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem. 2011 Sep 22;54(18):6342-63.

其他信息
Pharmacodynamics
In a phase I study, 37 patients with a variety of solid-tumor cancers refractory to therapy received 50 to 300 mg of crizotinib daily or twice daily. In this group, two patients with non-small cell lung cancer (NSCLC) exhibiting echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) mutations responded to therapy; therefore, following studies focused on patients with advanced ALK-positive disease. In this group of patients, the 6-month progression-free survival among crizotinib users was approximately 72%. When compared to ALK mutation-positive patients that did not receive crizotinib, ALK mutation-positive patients treated with crizotinib had a higher two-year overall survival rate (54% vs 36%). The use of crizotinib may lead to hepatotoxicity, interstitial lung disease (ILD), pneumonitis, QT interval prolongation, bradycardia, severe visual loss, ​​embryo-fetal toxicity and gastrointestinal toxicity in pediatric and young adult patients with anaplastic large cell lymphoma (ALCL) or pediatric patients with inflammatory myofibroblastic tumor (IMT).
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C23H26CL2FN5O3
分子量
510.3914
精确质量
509.14
元素分析
C, 54.13; H, 5.13; Cl, 13.89; F, 3.72; N, 13.72; O, 9.40
CAS号
877399-53-6
相关CAS号
Crizotinib-d5;1395950-84-1; Crizotinib hydrochloride;1415560-69-8;Crizotinib-d5;1395950-84-1; 877399-52-5
PubChem CID
11626560
外观&性状
Typically exists as solid at room temperature
LogP
6.038
tPSA
115.29
氢键供体(HBD)数目
2
氢键受体(HBA)数目
6
可旋转键数目(RBC)
5
重原子数目
30
分子复杂度/Complexity
558
定义原子立体中心数目
1
SMILES
ClC1C(=CC=C(C=1[C@@H](C)OC1=C(N)N=CC(=C1)C1C=NN(C=1)C1CCNCC1)Cl)F
InChi Key
LFCVDLCLKZRGFW-UTONKHPSSA-N
InChi Code
InChI=1S/C21H22Cl2FN5O.C2H4O2/c1-12(19-16(22)2-3-17(24)20(19)23)30-18-8-13(9-27-21(18)25)14-10-28-29(11-14)15-4-6-26-7-5-15;1-2(3)4/h2-3,8-12,15,26H,4-7H2,1H3,(H2,25,27);1H3,(H,3,4)/t12-;/m1./s1
化学名
(R)-3-(1-(2,6-dichloro-3-fluorophenyl)ethoxy)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)pyridin-2-amine acetate
别名
PF 2341066; PF-2341066; Crizotinib (acetate); 2-Pyridinamine, 3-[(1R)-1-(2,6-dichloro-3-fluorophenyl)ethoxy]-5-[1-(4-piperidinyl)-1H-pyrazol-4-yl]-, acetate (1:1); FB99MH8KWZ; SCHEMBL1827232; DTXSID00236600; LFCVDLCLKZRGFW-UTONKHPSSA-N; PF2341066
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
溶解度 (体内实验)
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。

注射用配方
(IP/IV/IM/SC等)
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO 50 μL Tween 80 850 μL Saline)
*生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。
注射用配方 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO 400 μL PEG300 50 μL Tween 80 450 μL Saline)
注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO 900 μL Corn oil)
示例: 注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。
View More

注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO 900 μL (20% SBE-β-CD in Saline)]
*20% SBE-β-CD in Saline的制备(4°C,储存1周):将2g SBE-β-CD (磺丁基-β-环糊精) 溶解于10mL生理盐水中,得到澄清溶液。
注射用配方 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (如: 500 μL 2-Hydroxypropyl-β-cyclodextrin (羟丙基环胡精) 500 μL Saline)
注射用配方 6: DMSO : PEG300 : Castor oil : Saline = 5 : 10 : 20 : 65 (如: 50 μL DMSO 100 μL PEG300 200 μL Castor oil 650 μL Saline)
注射用配方 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (如: 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
注射用配方 8: 溶解于Cremophor/Ethanol (50 : 50), 然后用生理盐水稀释。
注射用配方 9: EtOH : Corn oil = 10 : 90 (如: 100 μL EtOH 900 μL Corn oil)
注射用配方 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL EtOH 400 μL PEG300 50 μL Tween 80 450 μL Saline)


口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠)
口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素)
示例: 口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。
View More

口服配方 3: 溶解于 PEG400 (聚乙二醇400)
口服配方 4: 悬浮于0.2% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 5: 溶解于0.25% Tween 80 and 0.5% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 6: 做成粉末与食物混合


注意: 以上为较为常见方法,仅供参考, InvivoChem并未独立验证这些配方的准确性。具体溶剂的选择首先应参照文献已报道溶解方法、配方或剂型,对于某些尚未有文献报道溶解方法的化合物,需通过前期实验来确定(建议先取少量样品进行尝试),包括产品的溶解情况、梯度设置、动物的耐受性等。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 1.9593 mL 9.7964 mL 19.5929 mL
5 mM 0.3919 mL 1.9593 mL 3.9186 mL
10 mM 0.1959 mL 0.9796 mL 1.9593 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
Genetic Testing in Screening Patients With Stage IB-IIIA Non-small Cell Lung Cancer That Has Been or Will Be Removed by Surgery (The ALCHEMIST Screening Trial)
CTID: NCT02194738
Phase: N/A    Status: Recruiting
Date: 2024-12-02
A Study to Compare the Efficacy and Safety of Entrectinib and Crizotinib in Participants With Advanced or Metastatic ROS1 Non-small Cell Lung Cancer (NSCLC) With and Without Central Nervous System (CNS) Metastases
CTID: NCT04603807
Phase: Phase 3    Status: Recruiting
Date: 2024-11-22
Talazoparib and Palbociclib, Axitinib, or Crizotinib for the Treatment of Advanced or Metastatic Solid Tumors, TalaCom Trial
CTID: NCT04693468
Phase: Phase 1    Status: Recruiting
Date: 2024-11-20
A Study of Repotrectinib Versus Crizotinib in Participants With Locally Advanced or Metastatic Tyrosine Kinase Inhibitor (TKI)-naïve ROS1-positive Non-Small Cell Lung Cancer (NSCLC) (TRIDENT-3)
CTID: NCT06140836
Phase: Phase 3    Status: Recruiting
Date: 2024-11-19
Targeted Therapy Directed by Genetic Testing in Treating Patients With Advanced Refractory Solid Tumors, Lymphomas, or Multiple Myeloma (The MATCH Screening Trial)
CTID: NCT02465060
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-11-18
View More

Targeted Treatment for ALK Positive Patients Who Have Previously Been Treated for Non-squamous Non-small Cell Lung Cancer
CTID: NCT03737994
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-11-13


Study of IDE196 in Patients with Solid Tumors Harboring GNAQ/11 Mutations or PRKC Fusions
CTID: NCT03947385
Phase: Phase 1/Phase 2    Status: Recruiting
Date: 2024-11-13
Testing Cabozantinib, Crizotinib, Savolitinib and Sunitinib in Kidney Cancer Which Has Progressed
CTID: NCT02761057
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-11-13
Canadian Profiling and Targeted Agent Utilization Trial (CAPTUR)
CTID: NCT03297606
Phase: Phase 2    Status: Recruiting
Date: 2024-11-12
Long Term Safety Observation of Crizotinib in Chinese NSCLC Population
CTID: NCT03672643
Phase: Phase 4    Status: Terminated
Date: 2024-11-08
A Study Comparing Alectinib With Crizotinib in Treatment-Naive Anaplastic Lymphoma Kinase-Positive Advanced Non-Small Cell Lung Cancer Participants
CTID: NCT02075840
Phase: Phase 3    Status: Active, not recruiting
Date: 2024-11-07
Testing Crizotinib as a Potential Targeted Treatment in Cancers With ALK Genetic Changes (MATCH-Subprotocol F)
CTID: NCT04439266
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-11-07
IDE196 (Darovasertib) in Combination With Crizotinib as First-line Therapy in Metastatic Uveal Melanoma
CTID: NCT05987332
Phase: Phase 2/Phase 3    Status: Recruiting
Date: 2024-11-06
Testing Crizotinib as a Potential Targeted Treatment in Cancers With ROS1 Genetic Changes (MATCH-Subprotocol G)
CTID: NCT04439253
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-11-01
Testing Crizotinib as Potentially Targeted Treatment in Cancers With MET Exon 14 Deletion Genetic Changes (MATCH - Subprotocol C2)
CTID: NCT06360575
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-10-29
Testing Crizotinib as Potentially Targeted Treatment in Cancers With MET Genetic Changes (MATCH - Subprotocol C1)
CTID: NCT06357975
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-10-29
Treatment Strategies and Survival Outcome for Non-small Cell Lung Cancer With Oncogenic Mutation
CTID: NCT04322890
Phase: Phase 2    Status: Recruiting
Date: 2024-10-22
Crizotinib Continuation Clinical Study
CTID: NCT05160922
Phase: Phase 4    Status: Active, not recruiting
Date: 2024-10-10
A Rollover Study of Alectinib in Patients With Anaplastic Lymphoma Kinase (ALK)-Positive or Rearranged During Transfection (RET)-Positive Cancer
CTID: NCT03194893
Phase: Phase 3    Status: Recruiting
Date: 2024-10-03
A Study to Evaluate and Compare the Efficacy and Safety of Alectinib Versus Crizotinib and to Evaluate the Pharmacokinetics of Alectinib in Asian Participants With Treatment-Naive Anaplastic Lymphoma Kinase (ALK)-Positive Advanced Non-Small Cell Lung Cancer (NSCLC)
CTID: NCT02838420
Phase: Phase 3    Status: Active, not recruiting
Date: 2024-09-27
ALK Tyrosine Kinase Inhibitors in ALK-rearranged Advanced Squamous Cell Carcinoma
CTID: NCT05014464
Phase: Phase 2    Status: Recruiting
Date: 2024-09-20
Phase 2 Clinical Trial of Crizotinib for Children and Adults with Neurofibromatosis Type 2 and Progressive Vestibular Schwannomas
CTID: NCT04283669
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-09-19
A Study to Learn About the Effectiveness of Cancer Medicines in Patients With Metastatic Non-small Cell Lung Cancer in Norway.
CTID: NCT05834348
Phase:    Status: Completed
Date: 2024-09-04
A Phase III Study Comparing Taletrectinib With Standard Therapy in ROS1 Positive Locally Advanced or Metastatic Non-small Cell Lung Cancer Patients
CTID: NCT06564324
Phase: Phase 3    Status: Not yet recruiting
Date: 2024-08-21
Neoadjuvant Umbrella Trial for Patients With Unresectable Stage III NSCLC Harboring Rare Mutations.
CTID: NCT06563999
Phase: Phase 2    Status: Not yet recruiting
Date: 2024-08-21
Safety and Efficacy of Xalkori ROS1
CTID: NCT03375242
Phase:    Status: Recruiting
Date: 2024-08-21
------
Phase II study of ROS1 targeting with crizotinib in advanced E-cadherin negative, ER positive lobular breast cancer or diffuse gastric cancer
CTID: null
Phase: Phase 2    Status: GB - no longer in EU/EEA
Date: 2018-03-26
A Phase 3, randomized, open-label study of lorlatinib (PF-06463922) monotherapy versus crizotinib monotherapy in the first-line treatment of patients with advanced ALK-positive non-small cell lung cancer
CTID: null
Phase: Phase 3    Status: Ongoing, Trial now transitioned, Prematurely Ended
Date: 2017-08-01
A MULTICENTER, INTERNATIONAL, ROLLOVER STUDY OF ALECTINIB IN PATIENTS WITH ANAPLASTIC LYMPHOMA KINASE (ALK)-POSITIVE OR REARRANGED DURING TRANSFECTION (RET)-POSITIVE CANCER
CTID: null
Phase: Phase 3    Status: Ongoing, Completed
Date: 2017-05-16
A phase 1B of crizotinib either in combination or as single agent in pediatric patients with ALK, ROS1 or MET positive malignancies
CTID: null
Phase: Phase 1, Phase 2    Status: Ongoing, Trial now transitioned, Completed
Date: 2016-11-03
Phase 3, Randomized Study Comparing Ensartinib to Crizotinib in Anaplastic Lymphoma Kinase (ALK) Positive Non-Small Cell Lung Cancer (NSCLC) Patients
CTID: null
Phase: Phase 3    Status: Completed, Trial now transitioned, GB - no longer in EU/EEA, Ongoing
Date: 2016-09-21
National Lung Matrix Trial: Multi-drug, genetic marker-directed, non-comparative, multi-centre, multi-arm phase II trial in non-small cell lung cancer
CTID: null
Phase: Phase 2    Status: GB - no longer in EU/EEA
Date: 2016-07-15
A Phase 3 Multicenter Open-label Study of Brigatinib
CTID: null
Phase: Phase 3    Status: GB - no longer in EU/EEA, Prematurely Ended, Completed
Date: 2016-06-13
A Phase 1b/2, Open-Label, Dose-Finding Study to Evaluate Safety, Efficacy, Pharmacokinetics and Pharmacodynamics of Avelumab (MSB0010718C) in Combination with Either Crizotinib or PF-06463922 in Patients with Advanced or Metastatic Non-Small Cell Lung Cancer
CTID: null
Phase: Phase 1, Phase 2    Status: Completed
Date: 2016-03-11
Molecular-biological tumor profiling for drug treatment selection in patients with advanced and refractory carcinoma
CTID: null
Phase: Phase 2    Status: Completed
Date: 2015-05-04
A Study of HSP90 Inhibitor AT13387 Alone and in Combination with
CTID: null
Phase: Phase 1, Phase 2    Status: Completed
Date: 2014-12-15
Crizotinib in pretreated metastatic non-small-cell lung cancer with MET amplification or ROS1 translocation (METROS)
CTID: null
Phase: Phase 2    Status: Ongoing
Date: 2014-08-07
RANDOMIZED, MULTICENTER, PHASE III, OPEN LABEL STUDY OF ALECTINIB VERSUS CRIZOTINIB IN TREATMENT NAÏVE ANAPLASTIC LYMPHOMA KINASE-POSITIVE ADVANCED NON-SMALL CELL LUNG CANCER
CTID: null
Phase: Phase 3    Status: Ongoing, Trial now transitioned, GB - no longer in EU/EEA, Prematurely Ended, Completed
Date: 2014-07-28
A phase II trial to evaluate efficacy and safety of crizotinib treatment in advanced adenocarcinoma of the lung harbouring ROS1 translocations
CTID: null
Phase: Phase 2    Status: Completed
Date: 2014-05-13
Phase 1/2 study of PF-06463922 (an ALK/ROS1 tyrosine kinase inhibitor) in patients with advanced non-small cell lung cancer harboring specific molecular alterations.
CTID: null
Phase: Phase 1, Phase 2    Status: GB - no longer in EU/EEA, Completed
Date: 2014-03-21
Secured access to crizotinib for patients with tumors harboring a genomic alteration on one of the biological targets of the drug
CTID: null
Phase: Phase 2    Status: Ongoing
Date: 2013-07-31
Cross-tumoral Phase 2 clinical trial exploring Crizotinib (PF-02341066) in patients with advanced tumours induced by causal alterations of either ALK or MET.
CTID: null
Phase: Phase 2    Status: GB - no longer in EU/EEA, Prematurely Ended, Completed
Date: 2012-07-30
PHASE 1B OPEN-LABEL STUDY OF THE SAFETY AND CLINICAL ACTIVITY OF CRIZOTINIB (PF-02341066) IN TUMORS WITH GENETIC EVENTS INVOLVING THE ANAPLASTIC LYMPHOMA KINASE (ALK ) GENE LOCUS
CTID: null
Phase: Phase 1    Status: Completed
Date: 2011-02-10
PHASE 3, RANDOMIZED, OPEN-LABEL STUDY OF THE EFFICACY AND SAFETY OF CRIZOTINIB VERSUS PEMETREXED/CISPLATIN OR PEMETREXED/CARBOPLATIN IN PREVIOUSLY UNTREATED PATIENTS WITH NON-SQUAMOUS CARCINOMA OF THE LUNG HARBORING A TRANSLOCATION OR INVERSION EVENT INVOLVING THE ANAPLASTIC LYMPHOMA KINASE (ALK) GENE LOCUS
CTID: null
Phase: Phase 3    Status: Prematurely Ended, Completed
Date: 2010-12-30
PHASE 3, RANDOMIZED, OPEN-LABEL STUDY OF THE EFFICACY AND SAFETY OF PF 02341066 VERSUS STANDARD OF CARE CHEMOTHERAPY (PEMETREXED OR DOCETAXEL) IN PATIENTS WITH ADVANCED NON-SMALL CELL LUNG CANCER (NSCLC) HARBORING A TRANSLOCATION OR INVERSION EVENT INVOLVING THE ANAPLASTIC LYMPHOMA KINASE (ALK) GENE LOCUS
CTID: null
Phase: Phase 3    Status: Completed
Date: 2010-01-20
PHASE 2, OPEN-LABEL SINGLE ARM STUDY OF THE EFFICACY AND SAFETY OF PF 02341066 IN PATIENTS WITH ADVANCED NON-SMALL CELL LUNG CANCER (NSCLC) HARBORING A TRANSLOCATION OR INVERSION INVOLVING THE ANAPLASTIC LYMPHOMA KINASE (ALK) GENE LOCUS
CTID: null
Phase: Phase 2    Status: Completed
Date: 2010-01-20
A Sequential Phase I study of MEK1/2 inhibitors PD-0325901 or Binimetinib combined with cMET inhibitor Crizotinib in RAS Mutant and RAS Wild Type(with aberrant c-MET) Colorectal Cancer
CTID: null
Phase: Phase 1    Status: Completed
Date:

相关产品
联系我们