Mitapivat sulfate

别名: AG-348 sulfate hydrate, Mitapivat sulfate; AG348; PKR-IN-1; trade name Pyrukynd N-(4-(4-(环丙基甲基)哌嗪-1-甲酰基)苯基)喹啉-8-磺酰胺半硫酸盐三水合物
目录号: V25567 纯度: ≥98%
Mitapivat硫酸盐(AG348;PKR-IN-1;商品名Pyrukynd)是一种PKM2激活剂(丙酮酸激酶激活剂),已于2022年被批准用于治疗丙酮酸激酶(PK)缺乏的成人溶血性贫血。
Mitapivat sulfate CAS号: 2151847-10-6
产品类别: New1
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10mg
25mg
50mg
500mg
1g
Other Sizes

Other Forms of Mitapivat sulfate:

  • 米他匹伐
  • Mitapivat hemisulfate
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: =99.86%

产品描述
Mitapivat硫酸盐(AG348;PKR-IN-1;商品名Pyrukynd)是一种PKM2激活剂(丙酮酸激酶激活剂),已于2022年被批准用于治疗丙酮酸激酶(PK)缺乏的成人溶血性贫血。 Mitapivat 是一种有效的人 R 型丙酮酸激酶 (PKR) 抑制剂,对突变 PKR 也显示出效力,包括 R510Q PKR、R532W PKR、T384W PKR 等。丙酮酸激酶 M2 型,在多种肿瘤细胞类型中表达并发挥关键作用在有氧糖酵解中,具有非糖酵解功能,可以调节转录和细胞增殖。因此,据报道,丙酮酸激酶同工酶 M2 (PKM2) 的小分子激活剂可能会抑制肿瘤形成,但对已形成的肿瘤的影响尚不清楚。
生物活性&实验参考方法
靶点
Pyruvate kinase (PK)
体外研究 (In Vitro)
体外活性:Mitapivat,以前也称为 PKM2 激活剂 1020 是一种 PKM2 激活剂(丙酮酸激酶激活剂),具有治疗丙酮酸激酶缺陷的潜在用途。 Mitapivat 是一种有效的人 R 型丙酮酸激酶 (PKR) 抑制剂,对突变 PKR 也显示出效力,包括 R510Q PKR、R532W PKR、T384W PKR 等。丙酮酸激酶 M2 型,在多种肿瘤细胞类型中表达并发挥关键作用在有氧糖酵解中,具有非糖酵解功能,可以调节转录和细胞增殖。因此,据报道,丙酮酸激酶同工酶 M2 (PKM2) 的小分子激活剂可能会抑制肿瘤形成,但对已形成的肿瘤的影响尚不清楚。细胞检测:Mitapivat(0.1 nM-100 µM;16 小时)可激活健康捐献者红细胞中的 WT PK-R。 Mitapivat(0.01 nM-10 µM;16 小时)以剂量依赖性方式促进红细胞中 ATP 的产生[1]。
体内研究 (In Vivo)
Mitapivat(50 mg/kg;口服;每天两次,持续 21 天)可改善 β-地中海贫血小鼠模型的贫血
酶活实验
将重组 PK-R 酶与不同浓度的 Mitapivat 孵育(PEP 设定为 0.065 mM),检测酶活性以评估 Mitapivat 的激活作用。进行技术重复实验,并记录平均值、标准差、范围和重复次数[1] - 重组 WT PK-R 酶经 PEP 刺激,分为预先用 5 μM Mitapivat 孵育组和未孵育组,检测酶活性,采用 3 次技术重复的平均值进行数据分析[1] - 多种重组 mtPK-R 酶用 10 μM Mitapivat 处理(PEP 浓度见补充表格),测定激活倍数和 AC₅₀ 值,以评估 Mitapivat 对突变酶的激活效果[1] - 重组 R532W mtPK-R 酶经 PEP 刺激,分为预先用 5 μM Mitapivat 孵育组和未孵育组,检测酶活性(3 次技术重复的平均值)[1] - 重组 R532W mtPK-R 酶与不同浓度的 FBP 或 Mitapivat 孵育(PEP = 0.05 mM),检测酶活性以比较两种化合物的激活作用[1] - WT 或 R510Q 重组酶与 5 μM Mitapivat 在 53°C 孵育(PEP = 2 mM),随时间检测残余活性,以评估 Mitapivat 对酶热稳定性的影响[1] - 测定 Mitapivat 或 FBP(终 assay 浓度均为 5 μM,PEP = 2 mM)从重组 R510Q 酶上的解离速率,以评估药物与突变酶的结合动力学[1] - 采用偶联酶分光光度法检测健康供体、PK 缺乏症患者和小鼠 RBCs 中的 PK 活性(患者 B 除外,其活性通过液相色谱-串联质谱法直接测定丙酮酸生成量来评估)。在特定 PEP 浓度(如 0.1 mM、0.5 mM)下进行实验,以确定 Mitapivat 对 PK 活性的影响[1, 3]
细胞实验
健康供体的 RBCs 与不同浓度的 Mitapivat 过夜孵育后,检测 PK-R 活性(PEP = 0.1 mM)和 ATP 水平,以评估药物对健康 RBCs 的体外作用[1] - PK 缺乏症患者的 RBCs 与 Mitapivat 孵育 24 小时后,检测 PK-R 活性(PEP = 0.5 mM)和 ATP 水平。此外,将 PK 缺乏症患者的 RBC 裂解液与 2 mM Mitapivat 孵育(或不孵育)2 小时(37°C),随后在 53°C 下热处理不同时间(5、10、20、40、60 分钟),检测残余 PK 活性,以评估 PK 热稳定性[3] - 采用渗透扫描曲线评估 PK 缺乏症患者的 RBC 变形能力,并确定 Mitapivat 体外处理(20 mM,24 小时)对 RBC 变形能力的影响[3] - PK 缺乏症患者和健康对照的红系细胞体外培养,分为加入 2 mM Mitapivat 组和未加入组。观察增殖和分化不同阶段的细胞形态,检测细胞增殖(细胞数量百分比),并测定 PK/己糖激酶(HK)比率,以评估 Mitapivat 对红系细胞功能的影响[3] - 用 Mitapivat 体外处理 β-地中海贫血患者的红系前体细胞,评估其对红细胞生成、红系成熟和凋亡的影响[2]
动物实验
50 mg/kg; In animal feedings; single daily for 3 weeks.
WT C57B6 and Hbbth3/+ mice (both are 2-month-old female mice; β-thalassemia model)
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
The absolute bioavailability of mitapivat after a single dose is approximately 73%. Mitapivat exposure increases dose-proportionally. Following twice-daily oral administration of mitapivat at the dose of 5 mg, 20 mg, and 50 mg, the mean (CV%) Cmax at steady state were 101.2 (17%) ng/mL, 389.9 (18%) ng/mL, and 935.2 (18%) ng/mL, respectively. The mean (CV%) AUC were 450.4 (28%) ng x h/mL, 1623.8 (28%) ng x h/mL, and 3591.4 (28%) ng x h/mL, respectively. The median Tmax values at steady state were 0.5 to 1.0 hour post-dose across the dose range of 5 mg to 50 mg twice daily. In healthy subjects, a high-fat meal did not affect the drug exposure but reduced the rate of mitapivat absorption, with a 42% reduction in Cmax and a delay in Tmax of 2.3 hours when compared to dosing under fasted conditions.
Mitapivat is primary eliminated via hepatic metabolism. After a single oral administration of radiolabeled mitapivat in healthy subjects, the total recovery of administered radioactive dose was 89.2%. About 49.6% of radioactivity was recovered in the urine with 2.6% excreted as unchanged mitapivat. About 39.6% of radioactivity was recovered in the feces with less than 1% being the unchanged drug.
The mean volume of distribution at steady state (Vss) was 42.5 L.
Population pharmacokinetics derived median CL/F at steady state was 11.5, 12.7, and 14.4 L/h for the 5 mg twice daily, 20 mg twice daily, and 50 mg twice daily regimens, respectively.
Metabolism / Metabolites
According to _in vitro_ studies, mitapivat is primarily metabolized by CYP3A4. It is also a substrate of CYP1A2, CYP2C8, and CYP2C9. Following a single oral dose administration of 120 mg of radiolabeled mitapivat in healthy subjects, unchanged mitapivat was the major circulating component in plasma.
Biological Half-Life
In patients with pyruvate kinase deficiency receiving multiple doses of 5 mg mitapivat twice daily to 20 mg twice daily, the mean effective half-life (t1/2) of mitapivat ranged from 3 to 5 hours.
Plasma concentrations of Mitapivat were measured in mice after twice-daily dosing for 7 days at different dose levels, and AUC₀₋₁₂ hours was calculated for each dose level[1]
毒性/毒理 (Toxicokinetics/TK)
Protein Binding
Mitapivat is 97.7% bound to plasma proteins, with an RBC-to-plasma ratio of 0.37.
参考文献
2017 Jul 26;8(53):90959-90968;2018 Jan 1;17:1533034617749418.
其他信息
Drug Indication
Pyrukynd is indicated for the treatment of pyruvate kinase deficiency (PK deficiency) in adult patients (see section 4. 4).
Pharmacodynamics
Mitapivat is a pyruvate kinase activator that works to increase the activity of erythrocyte pyruvate kinase, an enzyme responsible for energy production for and survival of red blood cells. It is effective in upregulating the activity of both wild-type and mutant forms of erythrocyte pyruvate kinase. Interestingly, mitapivat is a mild-to-moderate inhibitor of the aromatase enzyme (CYP19A1), which is an enzyme involved in biosynthesis of estrogens from androgen precursors. Inhibition of aromatase is associated with bone density loss, as estrogen mediates suppressive, antiresorptive effects on osteoclasts and generally favours bone formation over resorption. Thus, low estrogen levels can increase bone turnover and osteoclast activity, resulting in net bone loss and decreased bone quality. Inhibition of aromatase by mitapivat may have some clinical implications, as patients with pyruvate kinase deficiency have considerably high rate of osteopenia and osteoporosis. The long-term effect of mitapivant on bond mineral density requires further investigation. One study suggests that this off-target effect may have negligible clinical effects on adults, but may potentially have some clinical implications in developing children.
Mitapivat (AG-348) is an allosteric activator of pyruvate kinase[1, 2, 3]
- PK deficiency is a rare genetic disease that causes chronic hemolytic anemia, and there are currently no targeted therapies for this condition. Mitapivat has the potential to restore the glycolytic pathway activity in patients with PK deficiency by increasing PK enzyme activity, thereby leading to clinical benefit[1]
- Anemia in β-thalassemia is related to ineffective erythropoiesis and reduced red cell survival. Excess free heme and accumulation of unpaired α-globin chains impose substantial oxidative stress on β-thalassemic erythroblasts and erythrocytes. Mitapivat reduces chronic hemolysis and ineffective erythropoiesis through stimulation of red cell glycolytic metabolism[2]
- Mitapivat is currently in clinical trials for the treatment of PK deficiency (ClinicalTrials.gov: NCT02476916, NCT03853798, NCT03548220, NCT03559699)[3]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C48H60N8O13S3
分子量
1053.23
精确质量
1052.344
CAS号
2151847-10-6
相关CAS号
2151847-10-6 (sulfate hydrate);1260075-17-9 (free);2329710-91-8 (sulfate); 2559738-69-9 (HCl); 2559738-74-6
PubChem CID
134693700
外观&性状
Typically exists as solid at room temperature
tPSA
268
氢键供体(HBD)数目
7
氢键受体(HBA)数目
19
可旋转键数目(RBC)
12
重原子数目
72
分子复杂度/Complexity
831
定义原子立体中心数目
0
SMILES
C1CC1CN2CCN(CC2)C(=O)C3=CC=C(C=C3)NS(=O)(=O)C4=CC=CC5=C4N=CC=C5.C1CC1CN2CCN(CC2)C(=O)C3=CC=C(C=C3)NS(=O)(=O)C4=CC=CC5=C4N=CC=C5.O.O.O.OS(=O)(=O)O
InChi Key
DMRIPASJCJRBMV-UHFFFAOYSA-N
InChi Code
InChI=1S/2C24H26N4O3S.H2O4S.3H2O/c2*29-24(28-15-13-27(14-16-28)17-18-6-7-18)20-8-10-21(11-9-20)26-32(30,31)22-5-1-3-19-4-2-12-25-23(19)22;1-5(2,3)4;;;/h2*1-5,8-12,18,26H,6-7,13-17H2;(H2,1,2,3,4);3*1H2
化学名
N-[4-[4-(cyclopropylmethyl)piperazine-1-carbonyl]phenyl]quinoline-8-sulfonamide;sulfuric acid;trihydrate
别名
AG-348 sulfate hydrate, Mitapivat sulfate; AG348; PKR-IN-1; trade name Pyrukynd
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
溶解度 (体内实验)
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。

注射用配方
(IP/IV/IM/SC等)
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO 50 μL Tween 80 850 μL Saline)
*生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。
注射用配方 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO 400 μL PEG300 50 μL Tween 80 450 μL Saline)
注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO 900 μL Corn oil)
示例: 注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。
View More

注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO 900 μL (20% SBE-β-CD in Saline)]
*20% SBE-β-CD in Saline的制备(4°C,储存1周):将2g SBE-β-CD (磺丁基-β-环糊精) 溶解于10mL生理盐水中,得到澄清溶液。
注射用配方 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (如: 500 μL 2-Hydroxypropyl-β-cyclodextrin (羟丙基环胡精) 500 μL Saline)
注射用配方 6: DMSO : PEG300 : Castor oil : Saline = 5 : 10 : 20 : 65 (如: 50 μL DMSO 100 μL PEG300 200 μL Castor oil 650 μL Saline)
注射用配方 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (如: 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
注射用配方 8: 溶解于Cremophor/Ethanol (50 : 50), 然后用生理盐水稀释。
注射用配方 9: EtOH : Corn oil = 10 : 90 (如: 100 μL EtOH 900 μL Corn oil)
注射用配方 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL EtOH 400 μL PEG300 50 μL Tween 80 450 μL Saline)


口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠)
口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素)
示例: 口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。
View More

口服配方 3: 溶解于 PEG400 (聚乙二醇400)
口服配方 4: 悬浮于0.2% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 5: 溶解于0.25% Tween 80 and 0.5% Carboxymethyl cellulose (羧甲基纤维素)
口服配方 6: 做成粉末与食物混合


注意: 以上为较为常见方法,仅供参考, InvivoChem并未独立验证这些配方的准确性。具体溶剂的选择首先应参照文献已报道溶解方法、配方或剂型,对于某些尚未有文献报道溶解方法的化合物,需通过前期实验来确定(建议先取少量样品进行尝试),包括产品的溶解情况、梯度设置、动物的耐受性等。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 0.9495 mL 4.7473 mL 9.4946 mL
5 mM 0.1899 mL 0.9495 mL 1.8989 mL
10 mM 0.0949 mL 0.4747 mL 0.9495 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
A Study Evaluating the Efficacy and Safety of Mitapivat (AG-348) in Participants With Sickle Cell Disease (RISE UP)
CTID: NCT05031780
Phase: Phase 2/Phase 3    Status: Active, not recruiting
Date: 2024-11-19
Study of How Mitapivat Affects Midazolam Blood Levels in Healthy Participants
CTID: NCT06648824
Phase: Phase 1    Status: Active, not recruiting
Date: 2024-11-19
A Study to Provide Continued Access to Mitapivat for Participants Who Previously Completed an Agios-Sponsored Mitapivat Study
CTID: NCT05777993
Phase: Phase 4    Status: Enrolling by invitation
Date: 2024-11-18
A Study Evaluating the Efficacy and Safety of Mitapivat in Participants With Transfusion-Dependent Alpha- or Beta-Thalassemia (α- or β-TDT)
CTID: NCT04770779
Phase: Phase 3    Status: Active, not recruiting
Date: 2024-11-15
A Study of AG-348 in Adult Participants With Pyruvate Kinase (PK) Deficiency
CTID: NCT02476916
Phase: Phase 2    Status: Active, not recruiting
Date: 2024-11-15
View More

A Study to Evaluate the Efficacy and Safety of Mitapivat in Pediatric Participants With Pyruvate Kinase Deficiency (PKD) Who Are Not Regularly Transfused, Followed by a 5-Year Extension Period
CTID: NCT05175105
Phase: Phase 3    Status: Active, not recruiting
Date: 2024-11-15


A Study to Determine the Efficacy, Safety, Pharmacokinetics, and Pharmacodynamics of AG-348 in Adult Participants With Non-transfusion-dependent Thalassem
Evaluation of safety and efficacy in mitapivat sulfate in adult patients with sickle cell disease
CTID: null
Phase: Phase 2    Status: Ongoing
Date: 2020-05-14
An Open-Label, Multicenter, Extension Study of AG-348 in Adult Subjects with Pyruvate Kinase Deficiency Previously Enrolled in AG-348 Studies
CTID: null
Phase: Phase 3    Status: Ongoing, GB - no longer in EU/EEA, Completed
Date: 2019-04-10
A Phase 3, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of AG-348 in Not Regularly Transfused Adult Subjects With Pyruvate Kinase Deficiency
CTID: null
Phase: Phase 3    Status: Completed
Date: 2019-04-08
A Phase 2, Open-Label, Multicenter Study to Determine the Efficacy, Safety, Pharmacokinetics, and Pharmacodynamics of AG-348 in Adult Subjects With Non-Transfusion-Dependent Thalassemia
CTID: null
Phase: Phase 2    Status: GB - no longer in EU/EEA
Date: 2018-11-20
An Open-Label Study to Evaluate the Efficacy and Safety of AG-348 in Regularly Transfused Adult Subjects With Pyruvate Kinase (PK) Deficiency
CTID: null
Phase: Phase 3    Status: Prematurely Ended, Completed
Date: 2018-06-27
A Phase 2, Open Label, Randomized, Dose Ranging, Safety, Efficacy, Pharmacokinetic and Pharmacodynamic Study of AG-348 in Adult Patients with Pyruvate Kinase Deficiency
CTID: null
Phase: Phase 2    Status: GB - no longer in EU/EEA, Completed
Date: 2015-07-10

相关产品
联系我们