规格 | 价格 | 库存 | 数量 |
---|---|---|---|
5g |
|
||
Other Sizes |
|
药代性质 (ADME/PK) |
Metabolism / Metabolites
The results of metabolic studies were that sorbic acid was qualitatively metabolized in the same manner as the saturated or singly unsaturated fatty acids of the same C-atom number. Under normal conditions, sorbic acid was almost completely oxidized to carbon dioxide and water. /Sorbic acid/ |
---|---|
毒性/毒理 (Toxicokinetics/TK) |
Toxicity Summary
IDENTIFICATION AND USE: Potassium sorbate forms white crystals or powder with characteristic odor. It is used as preservative and antimicrobial agent for foods, cosmetics, and pharmaceuticals. It has been also used as medication. HUMAN EXPOSURE AND TOXICITY: Formulations containing up to 0.5% sorbic acid and/or potassium sorbate were not significant primary or cumulative irritants and not sensitizers at this test concentration. In humans, a few cases of idiosyncratic intolerances have been reported (non-immunological contact urticaria and pseudo-allergy). ANIMAL STUDIES: Potassium sorbate was practically nontoxic to rats and mice in acute oral toxicity studies. Potassium sorbate at concentrations up to 10% was practically nonirritating to the rabbit's eye. Potassium sorbate have been tested for mutagenic effects using the Ames test, genetic recombination tests, reversion assays, rec assays, tests for chromosomal aberrations, sister chromatid exchanges, and gene mutations. Results have been both positive and negative. Potassium sorbate at 0.1% in the diet or 0.3% in drinking water of rats for up to 100 weeks produced no neoplasms. No teratogenic effects have been observed in pregnant mice and rats administered potassium sorbate. Interactions The food additives sodium nitrite and potassium sorbate had cytostatic and cytotoxic effects on in vitro cultured V79 hamster cells and EUE human fibroblasts if administered in an acid environment (pH 4.95). The strong cytotoxic effect of sodium nitrite and that of the combined action of sodium nitrite and potassium sorbate was observed along the inhibition of macromolecular synthesis. In this respect, potassium sorbate was less effective. The decreased plating efficiency of the cells and the inhibition of de novo DNA synthesis induced by these substances aroused the question whether they also have genotoxic effects on V79 cells. Statistical analyses showed that sodium nitrite induced more 6-TG-resistant (6-TGr) mutants as compared to the untreated control. However, this elevation did not correspond to the level of inhibition of DNA synthesis determined during the followed period of time after the removal of the substance. Potassium sorbate and a combination thereof with sodium nitrite, in our experiments, had no mutagenic effects. Although potassium sorbate (PS), ascorbic acid and ferric or ferrous salts (Fe-salts) are used widely in combination as food additives, the strong reactivity of PS and oxidative potency of ascorbic acid in the presence of Fe-salts might form toxic compounds in food during its deposit and distribution. In the present paper, the reaction mixture of PS, ascorbic acid and Fe-salts was evaluated for mutagenicity and DNA-damaging activity by means of the Ames test and rec-assay. Effective lethality was observed in the rec-assay. No mutagenicity was induced in either Salmonella typhimurium strains TA98 (with or without S-9 mix) or TA100 (with S-9 mix). In contrast, a dose-dependent mutagenic effect was obtained when applied to strain TA100 without S-9 mix. The mutagenic activity became stronger increasing with the reaction period. Furthermore, the reaction products obtained in a nitrogen atmosphere did not show any mutagenic and DNA-damaging activity. PS, ascorbic acid and Fe-salts were inactive when they were used separately. Omission of one component from the mixture of PS, ascorbic acid and Fe-salt turned the reaction system inactive. These results demonstrate that ascorbic acid and Fe-salt oxidized PS and the oxidative products caused mutagenicity and DNA-damaging activity. Non-Human Toxicity Values LD50 Rats oral 4920 mg/kg LD50 Mice ip 1300 mg/kg |
参考文献 | |
其他信息 |
Potassium sorbate is a potassium salt having sorbate as the counterion. It has a role as an antimicrobial food preservative. It contains an (E,E)-sorbate.
Mold and yeast inhibitor. Used as a fungistatic agent for foods, especially cheeses. Therapeutic Uses One hundred and twenty-two cases of vaginal fungal infections treated with potassium sorbate are presented. A new method of follow-up home application by means of vaginal tampons is tried. Relief of symptoms is prompt, and yeast organism disappear; the safety and superior efficacy of a strengthened (3%) solution is established. Treatment of fungal infections in males is also discussed. |
分子式 |
C6H7KO2
|
---|---|
分子量 |
150.2169
|
精确质量 |
150.008
|
CAS号 |
24634-61-5
|
相关CAS号 |
Sorbic acid;110-44-1
|
PubChem CID |
23676745
|
外观&性状 |
White to off-white solid powder
|
密度 |
1,361 g/cm3
|
沸点 |
233ºC at 760 mmHg
|
熔点 |
270 °C
|
闪点 |
139.9ºC
|
tPSA |
40.13
|
氢键供体(HBD)数目 |
0
|
氢键受体(HBA)数目 |
2
|
可旋转键数目(RBC) |
2
|
重原子数目 |
9
|
分子复杂度/Complexity |
127
|
定义原子立体中心数目 |
0
|
SMILES |
C/C=C/C=C/C(=O)[O-].[K+]
|
InChi Key |
CHHHXKFHOYLYRE-STWYSWDKSA-M
|
InChi Code |
InChI=1S/C6H8O2.K/c1-2-3-4-5-6(7)8;/h2-5H,1H3,(H,7,8);/q;+1/p-1/b3-2+,5-4+;
|
化学名 |
potassium;(2E,4E)-hexa-2,4-dienoate
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。 |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
H2O : ~50 mg/mL (~332.85 mM)
DMSO :< 1 mg/mL |
---|---|
溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 6.6569 mL | 33.2845 mL | 66.5690 mL | |
5 mM | 1.3314 mL | 6.6569 mL | 13.3138 mL | |
10 mM | 0.6657 mL | 3.3285 mL | 6.6569 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。